Summary

En trombotisk hjerneslag modell basert på Transient Cerebral Hypoksi-iskemi

Published: August 18, 2015
doi:

Summary

Thromboembolic stroke models are vital tools for optimizing the recanalization therapy. Here we report a murine thrombotic stroke model based on transient cerebral hypoxic-ischemic (tHI) insult, which triggers thrombosis and infarction, and responds favorably to tissue plasminogen activator (tPA)-mediated fibrinolysis in a therapeutic window similar to those in stroke patients.

Abstract

Stroke forskning har tålt mange tilbakeslag i å oversette nevro terapi i klinisk praksis. I motsetning til den virkelige verden terapi (Pa trombolyse) produserer sjelden fordeler i mekaniske okklusjon-baserte eksperimentelle modeller, som dominerer preklinisk hjerneslag forskning. Denne fordelingen mellom benk og nattbord antyder behovet for å ansette Pa-responsive modeller i preklinisk hjerneslag forskning. For dette formål, er en enkel og tPA-reaktive trombotisk slag modell oppfunnet og beskrevet her. Denne modellen består av transient okklusjon av den ensidige arteria carotis communis og levering av 7,5% oksygen gjennom en ansiktsmaske i voksen mus i 30 minutter, under opprettholdelse av dyret rektal temperatur på 37,5 ± 0,5 ° C. Selv reversibel ligering av den ensidige carotid arterie eller hypoksi hver trykkes cerebral blodstrøm bare forbigående, er kombinasjonen av begge fornærmelser forårsaket varig reperfusjon underskudd, fibrin og blodplateavleiring, og store INFARct i midten cerebral arterie-leverte territorium. Viktigere, haleveneinjeksjon av rekombinant tPA ved 0,5, 1, eller fire timer etter Thi (10 mg / kg) gitt tidsavhengig reduksjon av dødelighet og infarktstørrelsen. Denne nye slagmodell, er enkel og kan standardiseres tvers laboratorier for å sammenligne eksperimentelle resultater. Videre induserer det trombose uten craniectomy eller innføre forhånds dannet emboli. Gitt disse unike fordeler, er thi modellen et nyttig tillegg til repertoaret av preklinisk hjerneslag forskning.

Introduction

Thrombolysis and recanalization is the most effective therapy of acute ischemic stroke in clinical practice1. Yet, the majority of preclinical neuroprotection research was performed in a transient mechanic obstruction model (intraluminal suture middle cerebral artery occlusion) that produces rapid recovery of cerebral blood flow upon removal of the vascular occlusion and shows little to no benefits by tPA thrombolysis. It has been suggested that the dubious choice of stroke models contributed, at least in part, to the difficulty in translating neuroprotective therapy to patients2,3. Hence, there is an increasing call for employing tPA-responsive thromboembolic stroke models in preclinical research, but such models also have technical problems (see Discussion)4-7. Here we describe a new thrombotic stroke model based on unilateral transient hypoxic-ischemic (tHI) insult and its responses to intravenous tPA therapy8.

The tHI stroke model was developed based on the Levine procedure (permanent ligation of the unilateral common carotid artery followed by exposure to transient hypoxia in a chamber) that was invented for experiments with adult rats in 19609. The original Levine procedure faded into obscurity because it only produced variable brain damage, but the same insult caused consistent neuropathology in rodent pups when it was re-introduced by Robert Vannucci and his colleagues as a model of neonatal hypoxic-ischemic encephalopathy (HIE) in 198110. In recent years, some investigators re-adapted the Levine-Vannucci model to adult mice by adjusting the temperature in the hypoxic chamber11. It is plausible that the inconsistent brain lesions in the original Levine procedure may arise from fluctuating body temperatures of adult rodents in the hypoxic chamber. To test this hypothesis, we modified the Levine procedure by administering hypoxic gas through a facemask, while maintaining the rodent core temperature at 37 °C on the surgical table12. As expected, stringent body temperature control greatly increased the reproducibility of HI-induced brain pathology. The HI insult also triggers coagulation, autophagy, and gray- and white-matter injury13. Other investigators have also used the HI model to investigate post-stroke inflammatory responses14.

A unique feature of the HI stroke model is that it closely follows the Virchow’s triad of thrombus formation, including the stasis of blood flow, endothelial injury (e.g. due to HI-induced oxidative stress), and hypercoagulability (HI-induced platelet activation) (Figure 1A)15. As such, the HI model may capture some pathophysiological mechanisms relevant to real-world ischemic stroke. With this idea in mind, we further refined the HI model with reversible ligation of the unilateral common carotid artery (therefore to create a transient HI insult), and tested its responses to tPA thrombolysis with or without Edaravone. Edaravone is a free radical scavenger already approved in Japan to treat ischemic stroke within 24 hr of onset9. Our experiments showed that as brief as 30 min transient HI triggers thrombotic infarction, and that combined tPA-Edaravone treatment confers synergistic benefits8. Here we describe detailed surgical procedures and methodological considerations of the tHI model, which can be used to optimize reperfusion treatments of acute ischemic stroke.

Protocol

This protocol is approved by the Institutional Animal Care and Use Committee (IACUC) of Emory University and follows the National Institutes of Health Guideline for Care and Use of Laboratory Animals. 1. Setup Prepare the surgical bed on warming pad connected with heat pump at 37 °C for at least 15 min before the surgery. Place a neck roll using the barrel of 3 ml syringe on the surgical bed. Prepare the anesthesia gas with 2% isoflurane in medical air. Prepare autoc…

Representative Results

Two-dimensional laser speckle contrast imaging (LSCI)16 was used to compare the alterations of cerebral blood flow (CBF) by 30 min transient unilateral carotid occlusion (tCCAO), 30 min exposure to hypoxia (7.5% oxygen), and 30 min unilateral carotid ligation under hypoxia (tHI). This experiment revealed that tCCAO under normoxia suppressed the CBF on the carotid ligated hemisphere to ~50% of the baseline value, which quickly recovered to above 85% after release of the carotid occlusion (R in Figure 2A…

Discussion

Stroke is a major health issue of growing significance for any society with an aging population. Globally, stroke is the second-leading cause of death with an estimated 5.9 million fatal events in 2010, equivalent to 11.1% of all deaths18. Stroke is also the third-leading cause of disability-adjusted life years (DALYs) lost globally in 2010, rising from the fifth position in 199019. These epidemiological data highlight the need of more effective therapies of acute (ischemic) stroke. However, despite…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was supported by the NIH grant NS074559 (to C. K.). We thank all collaborators who contributed to our research articles that the present methodology report is based upon.

Materials

adult male mice Charles River C57BL/6  10~13 weeks old (22~30 g)
Mobile Laboratory Animal Anesthesia System VetEquip 901807 anesthesia
Medical air (Compressed) air tank Airgas UN1002 anesthesia
Isoflurane Piramal Healthcare NDC 66794-013-25 anesthesia
Multi-Station Lab Animal AnesthesiaSystem Surgivet V703501 hypoxia system
7.5% O2 balanced by 92.5% N2 tank Airgas UN1956 hypoxia system
Temperature Controller with heating lamp  Cole Parmer  EW-89000-10 temperature controllers
Rectal probe Cole Parmer  NCI-00141PG temperature controllers
Dissecting microscope  Olympus  SZ40 surgical setup
Heat pump with warming pad Gaymar  TP700 surgical setup
Fine curved forceps (serrated) FST 11370-31 surgical instrument
Fine curved forceps (smooth) FST 11373-12 surgical instrument
micro scissors FST 15000-03 surgical instrument
micro needle holders FST 12060-01 surgical instrument
Halsted-Mosquito hemostats FST 13008-12 surgical instrument
5-0 silk suture  Harvard Apparatus 624143 surgical supplies
4-0 Nylon monofilament suture LOOK 766B surgical supplies
Tissue glue Abbott Laboratories NC9855218 surgical supplies
Puralube Vet ointment Fisher NC0138063  eye dryness prevention 
MoorFLPI-2 blood flow imager Moor 780-nm laser source Laser Speckle Contrast Imaging
Mannitol Sigma M4125 in-vivo TTC
2,3,5-triphenyltetrazolium chloride (TTC)  Sigma T8877 in-vivo TTC
Vibratome Stoelting 51425 brain section for in-vivo TTC 
Digital microscope Dino-Lite AM2111 whole-braina imaging
O.C.T compound Sakura Finetek 4583
goat anti-rabbit Alexa Fluro 488 Invitrogen A11008 Immunohistochemistry
Cryostat Vibratome ultrapro 5000 brain section for IHC
Evans blue Sigma E2129 Detecting vascular perfusion
Microtome Electron Microscopy Sciences 5000 brain section for histology
Avertin (2, 2, 2-Tribromoethanol) Sigma T48402 euthanasia
Fluorescent microscope Olympus DP73

References

  1. Broderick, J. P., Hacke, W. Treatment of acute ischemic stroke: Part I: recanalization strategies. Circulation. 106 (12), 1563-1569 (2002).
  2. Hossmann, K. A. Pathophysiological basis of translational stroke research. Folia Neuropathol. 47 (3), 213-227 (2009).
  3. Hossmann, K. A. The two pathophysiologies of focal brain ischemia: implications for translational stroke research. J. Cereb. Blood Flow Metab. 32 (7), 1310-1316 (2012).
  4. Macrae, I. M. Preclinical stroke research–advantages and disadvantages of the most common rodent models of focal ischaemia. Br. J. Pharmacol. 164 (4), 1062-1078 (2011).
  5. Niessen, F., Hilger, T., Hoehn, M., Hossmann, K. A. Differences in clot preparation determine outcome of recombinant tissue plasminogen activator treatment in experimental thromboembolic stroke. Stroke. 34 (8), 2019-2024 (2003).
  6. Orset, C., et al. Mouse model of in situ thromboembolic stroke and reperfusion. Stroke. 38 (10), 2771-2778 (2007).
  7. Watson, B. D., Dietrich, W. D., Prado, R., Ginsberg, M. D. Argon laser-induced arterial photothrombosis. Characterization and possible application to therapy of arteriovenous malformations. J. Neurosurgery. 66 (5), 748-754 (1987).
  8. Sun, Y. Y., et al. Synergy of combined tPA-edaravone therapy in experimental thrombotic stroke. PLoS One. 9, e98807 (2014).
  9. Levine, S. Anoxic-ischemic encephalopathy in rats. Am. J. Pathol. 36, 1-17 (1960).
  10. Rice, J. E. 3. r. d., Vannucci, R. C., Brierley, J. B. The influence of immaturity on hypoxic-ischemic brain damage in the rat. Annals Neurol. 9 (2), 131-141 (1981).
  11. Vannucci, S. J., et al. Experimental stroke in the female diabetic, db/db, mouse. J. Cereb. Blood Flow Metab. 21 (2), 52-60 (2001).
  12. Adhami, F., et al. Cerebral ischemia-hypoxia induces intravascular coagulation and autophagy. Am. J. Pathol. 169 (2), 566-583 (2006).
  13. Shereen, A., et al. Ex vivo diffusion tensor imaging and neuropathological correlation in a murine model of hypoxia-ischemia-induced thrombotic stroke. J. Cereb. Blood Flow Metab. 31 (4), 1155-1169 (2011).
  14. Michaud, J. P., Pimentel-Coelho, P. M., Tremblay, Y., Rivest, S. The impact of Ly6C low monocytes after cerebral hypoxia-ischemia in adult mice. J. Cereb. Blood Flow Metab. 34 (7), e1-e9 (2014).
  15. Zoppo, G. J. Virchow’s triad: the vascular basis of cerebral injury. Rev. Neurol. Dis. 5, 12-21 (2008).
  16. Dunn, A. K. Laser speckle contrast imaging of cerebral blood flow. Annals Biomed. Eng. 40 (2), 367-377 (2012).
  17. Sun, Y. Y., Yang, D., Kuan, C. Y. Mannitol-facilitated perfusion staining with 2,3,5-triphenyltetrazolium chloride (TTC) for detection of experimental cerebral infarction and biochemical analysis. J. Neurosci. Methods. 203 (1), 122-129 (2012).
  18. Lozano, R., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study. Lancet. 380 (9859), 2095-2128 (2010).
  19. Murray, C. J., et al. Disability-adjusted life years (DALYs) for 291 diseases and injuries in 21 regions, 1990-2010: a systematic analysis for the Global Burden of Disease Study. Lancet. 380 (9859), 2197-2223 (2012).
  20. Dirnagl, U., Macleod, M. R. Stroke research at a road block: the streets from adversity should be paved with meta-analysis and good laboratory practice. Br. J. Pharm. 157 (7), 1154-1156 (2009).
  21. Dirnagl, U., et al. A concerted appeal for international cooperation in preclinical stroke research. Stroke. 44 (6), 1754-1760 (2013).
  22. Khatri, P., et al. Revascularization end points in stroke interventional trials: recanalization versus reperfusion in IMS-I. Stroke. 36 (11), 2400-2403 (2005).
  23. Rosenberg, R. D., Aird, W. C. Vascular-bed–specific hemostasis and hypercoagulable states. New Eng. J. Med. 340 (20), 1555-1564 (1999).
  24. Majid, A., et al. Differences in vulnerability to permanent focal cerebral ischemia among 3 common mouse strains. Stroke. 31 (11), 2707-2714 (2000).
check_url/kr/52978?article_type=t

Play Video

Cite This Article
Sun, Y., Kuan, C. A Thrombotic Stroke Model Based On Transient Cerebral Hypoxia-ischemia. J. Vis. Exp. (102), e52978, doi:10.3791/52978 (2015).

View Video