Summary

Udviklet vaskulariserede Muskel Flap

Published: January 11, 2016
doi:

Summary

To date, thick tissue defects are typically reconstructed by applying autologous tissue flaps or engineered tissues. In this protocol, we present a new method for engineering vascularized tissue flap bearing an autologous pedicle, to serve as a substitute to autologous flaps.

Abstract

One of the main factors limiting the thickness of a tissue construct and its consequential viability and applicability in vivo, is the control of oxygen supply to the cell microenvironment, as passive diffusion is limited to a very thin layer. Although various materials have been described to restore the integrity of full-thickness defects of the abdominal wall, no material has yet proved to be optimal, due to low graft vascularization, tissue rejection, infection, or inadequate mechanical properties. This protocol describes a means of engineering a fully vascularized flap, with a thickness relevant for muscle tissue reconstruction. Cell-embedded poly L-lactic acid/poly lactic-co-glycolic acid constructs are implanted around the mouse femoral artery and vein and maintained in vivo for a period of one or two weeks. The vascularized graft is then transferred as a flap towards a full thickness defect made in the abdomen. This technique replaces the need for autologous tissue sacrifications and may enable the use of in vitro engineered vascularized flaps in many surgical applications.

Introduction

Bugvæggen defekter ofte opstår efter alvorlige traumer, kræftbehandling, forbrændinger og fjernelse af inficeret mesh. Disse defekter involverer ofte betydelige tab væv, der kræver komplicerede kirurgiske procedurer og præsentere en stor udfordring for plastik genopbygning kirurger 1-4. Tissue engineering forskere, der søger nye kilder til kunstige væv har udforsket forskellige materialer, celle kilder og vækstfaktorer. Succesfulde restaureringer af forskellige væv, såsom luftrøret 5,6, blære 7, 8 cornea, bone 9 og huden 10, ved implantation af industrielt væv blev tidligere rapporteret. Men fabrikation af en tyk vaskulariseret manipuleret væv, især til ombygning af store defekter, er fortsat en stor udfordring i tissue engineering.

En af de vigtigste faktorer, der begrænser tykkelsen af ​​et levedygtigt væv konstruktion er kontrol af iltforsyning til sine ulempertituent celler. Når afhængige af diffusion, konstruere tykkelse er begrænset til den af ​​et meget tyndt lag. Den maksimale afstand mellem ilt- og næringsstof-forsyning kapillærer in vivo er ca. 200 um, hvilket korrelerer med diffusion grænse for ilt 11,12. Utilstrækkelig vaskularisering kan resultere i vævsiskæmi og eskalerer væv resorption eller necrosis 13.

Desuden skal det ideelle materiale anvendes til vævsrekonstruktion være biokompatibelt og ikke-immunogene. Det skal også være i stand til at fremme yderligere integration af værtsceller med biomateriale, og opretholdelse af strukturel integritet. Forskellige biologiske 14-16 og syntetiske 1,17,18 matricer er tidligere blevet undersøgt for vævsrekonstruktion dog deres anvendelse begrænses på grund af mangel på effektiv blodtilførsel, infektioner eller utilstrækkelig væv styrke.

I denne undersøgelse, en biokompatibel, celle-embedded stillads bestående af Food and Drug Administration (FDA) -godkendt poly-L-mælkesyre (PLLA) / poly mælke-co-glycolsyre (PLGA), blev implanteret omkring femoral arterie og vene (AV) fartøjer med en nøgen mus og adskilt fra det omgivende væv, hvilket sikrer vaskularisering fra AV kun skibe. En uge post-implantation, transplantatet var levedygtig, tyk og godt vaskulariseret. Denne tykke vaskulariseret væv med AV fartøjer, blev derefter overført som en pedicled klap til en abdominal fuld tykkelse defekt i samme mus. En uge efter indsættelse, flappen var levedygtig, vaskulariseret og godt integreret med det omgivende væv, idet tilstrækkelig styrke til at understøtte indvolde fra bughulen. Således konstruerede tyk, vaskulariseret væv flap, der bærer et autologt stilken, præsenterer en ny fremgangsmåde til reparation af fuld tykkelse bugvæggen defekter.

Protocol

Alle dyreforsøg blev godkendt af udvalget for den etiske af dyreforsøg i Technion. Til denne fremgangsmåde blev athymiske nøgne mus anvendes til at undgå immunologisk afstødning. Hvis du bruger en anden type mus, bør musene skal barberes anbefales før den kirurgiske procedure og administration af cyclosporin (eller andet anti-afvisning stedfortræder). 1. Stillads Forberedelse og Cell Embedding Forbered stilladser sammensat af 1: 1-blanding af poly-L-mælkesyre (PLLA) og p…

Representative Results

Graft vaskularisering og in vivo perfusion De podninger blev implanteret en eller to uger før overførsel som aksiale klapper. På en og to uger efter implantation, brutto observation af graft området afslørede levedygtige og vaskulariserede vævstransplantater. Disse transplantater viste sig at være yderst vaskulariseret, som bestemt ved positiv immunfarvning CD31 (figur 1A), og stærkt perfunderet, som det fremgår af FITC-dextran injektion i halevenen og ultr…

Discussion

De fremskridt inden for tissue engineering er blevet mødt med en stigende efterspørgsel efter alternative væv til genopbygning af forskellige vævstyper. En række syntetiske 1,17,18 og biologiske 14-16 materialer samt fabrikation metoder er blevet vurderet for deres evne til at håndtere disse krav. Trods fremskridt i klinisk pleje og i vævsmanipulering, genoprettelse af fuld tykkelse abdominale væg defekter fortsat en udfordring. Et væv tilstrækkelig til genopførelse af sådanne massive d…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This research was supported by the FP7 European Research Council Grant 281501, ENGVASC.

Materials

small fine straight scissors Fine Science Tools (FST) 14090-09
spring scissors Fine Science Tools (FST) 15003-08
straight forceps with fine tip Fine Science Tools (FST) 11251-20
serrated forceps  Fine Science Tools (FST) 11050-10
needle holder Fine Science Tools (FST) 12500-12
Small vessel cauterizer  Fine Science Tools (FST) 18000-00
Duratears Alcon 5686
Sedaxylan Euravet DJ03
Clorketam 1000 Vetoquinol 4A0726B
Buprenorphine vetmarket B15100
4-0 silk sutures Assut sutures 647
6-0 polypropylene sutures Assut sutures 9351F
8-0 silk sutures Assut sutures 684568
Insulin syringe (6mm needle) BD 324911
Vevo 2100 high-resolution ultrasound system VisualSonics inc.
MS250 non-linear transducer VisualSonics inc.
Micromarker non-targeted contrast agent VisualSonics inc. VS-11694
tail vein catheter VisualSonics inc. VS-11912
Vevo 2100 software VisualSonics inc.
fluorescein isothiocyanate-conjugated dextran Sigma FD500S
Matlab Mathworks, MA, USA
Kimwipes Kimtech 34120
antigen unmasking solution Vector laboratories H-3300
anti-CD31 antibody Abcam  ab28364
biotinylated goat anti-rabbit (secondary) antibody Vector laboratories BA-1000
streptavidin-peroxidase Jackson  016-030-084
Mayer's hamatoxylin solution Sigma-Aldrich MHS-16
aminoethylcarbazole (AEC) substrate kit Life technologies, Invitrogen  00-2007
Vectamount Vector laboratories H-5501

References

  1. Engelsman, A. F., van der Mei, H. C., Ploeg, R. J., Busscher, H. J. The phenomenon of infection with abdominal wall reconstruction. Biomaterials. 28 (14), 2314-2327 (2007).
  2. De Coppi, P., et al. Myoblast-acellular skeletal muscle matrix constructs guarantee a long-term repair of experimental full-thickness abdominal wall defects. Tissue Eng. 12 (7), 1929-1936 (2006).
  3. Shi, C., et al. Regeneration of full-thickness abdominal wall defects in rats using collagen scaffolds loaded with collagen-binding basic fibroblast growth factor. Biomaterials. 32 (3), 753-759 (2011).
  4. Yezhelyev, M. V., Deigni, O., Losken, A. Management of full-thickness abdominal wall defects following tumor resection. Ann Plast Surg. 69 (2), 186-191 (2012).
  5. Macchiarini, P., Walles, T., Biancosino, C., Mertsching, H. First human transplantation of a bioengineered airway tissue. J Thorac Cardiovasc Surg. 128 (4), 638-641 (2004).
  6. Macchiarini, P., et al. Clinical transplantation of a tissue-engineered airway. Lancet. 372 (9665), 2023-2030 (2008).
  7. Atala, A., Bauer, S. B., Soker, S., Yoo, J. J., Retik, A. B. Tissue-engineered autologous bladders for patients needing cystoplasty. Lancet. 367 (9518), 1241-1246 (2006).
  8. Nishida, K., et al. Corneal reconstruction with tissue-engineered cell sheets composed of autologous oral mucosal epithelium. N Engl J Med. 351 (12), 1187-1196 (2004).
  9. Petite, H., et al. Tissue-engineered bone regeneration. Nat Biotechnol. 18 (9), 959-963 (2000).
  10. Banta, M. N., Kirsner, R. S. Modulating diseased skin with tissue engineering: actinic purpura treated with Apligraf. Dermatol Surg. 28 (12), 1103-1106 (2002).
  11. Vunjak-Novakovic, G., et al. Challenges in cardiac tissue engineering. Tissue engineering. Part B, Reviews. 16 (2), 169-187 (2010).
  12. Novosel, E. C., Kleinhans, C., Kluger, P. J. Vascularization is the key challenge in tissue engineering. Advanced Drug Delivery Reviews. 63 (4-5), 300-311 (2011).
  13. Lesman, A., Gepstein, L., Levenberg, S. Vascularization shaping the heart. Ann N Y Acad Sci. 1188, 46-51 (2010).
  14. Patton Jr, H., Berry, S., Kralovich, K. A. Use of human acellular dermal matrix in complex and contaminated abdominal wall reconstructions. The Am J of Surg. 193 (3), 360-363 (2007).
  15. Menon, N. G., et al. Revascularization of human acellular dermis in full-thickness abdominal wall reconstruction in the rabbit model. Ann Plast Surg. 50 (5), 523-527 (2003).
  16. Buinewicz, B., Rosen, B. Acellular cadaveric dermis (AlloDerm): a new alternative for abdominal hernia repair. Ann Plast Surg. 52 (2), 188-194 (2004).
  17. Bringman, S., et al. Hernia repair: the search for ideal meshes. Hernia. 14 (1), 81-87 (2010).
  18. Meintjes, J., Yan, S., Zhou, L., Zheng, S., Zheng, M. Synthetic biological and composite scaffolds for abdominal wall reconstruction. Exp rev of med dev. 8 (2), 275-288 (2011).
  19. Cheng, G., et al. Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood. 118 (17), 4740-4749 (2011).
  20. Shandalov, Y., et al. An engineered muscle flap for reconstruction of large soft tissue defects. PNAS of the USA. 111 (16), 6010-6015 (2014).
  21. Zhang, T. Y., Suen, C. Y. A fast parallel algorithm for thinning digital patterns. Commun. ACM. 27 (3), 236-239 (1984).
  22. Luna, L. G., Luna, L. G. . Manual of Histo Stain Meth ; of the Arm Forcs Inst of Path. , (1968).
  23. Choi, J. H., et al. Adipose tissue engineering for soft tissue regeneration. Tissue engineering. Part B, Reviews. 16 (4), 413-426 (2010).
  24. Bellows, C. F., Alder, A., Helton, W. S. Abdominal wall reconstruction using biological tissue grafts: present status and future opportunities. Exp rev of med dev. 3 (5), 657-675 (2006).
  25. Caspi, O., et al. Tissue engineering of vascularized cardiac muscle from human embryonic stem cells. Circ Res. 100 (2), 263-272 (2007).
  26. Kaufman-Francis, K., Koffler, J., Weinberg, N., Dor, Y., Levenberg, S. Engineered vascular beds provide key signals to pancreatic hormone-producing cells. PloS one. 7 (7), e40741 (2012).
  27. Kaully, T., Kaufman-Francis, K., Lesman, A., Levenberg, S. Vascularization–the conduit to viable engineered tissues. Tiss eng. Part B, Reviews. 15 (2), 159-169 (2009).
  28. Koffler, J., et al. Improved vascular organization enhances functional integration of engineered skeletal muscle grafts. PNAS of the USA. 108 (36), 14789-14794 (2011).
  29. Lesman, A., et al. Transplantation of a tissue-engineered human vascularized cardiac muscle. Tisseng. Part A. 16 (1), 115-125 (2010).
  30. Levenberg, S., et al. Engineering vascularized skeletal muscle tissue. Nat Biotechnol. 23 (7), 879-884 (2005).
  31. Bearzi, C., et al. PlGF-MMP9-engineered iPS cells supported on a PEG-fibrinogen hydrogel scaffold possess an enhanced capacity to repair damaged myocardium. Cell death & disease. 5, e1053 (2014).
  32. Zhang, M., et al. SDF-1 expression by mesenchymal stem cells results in trophic support of cardiac myocytes after myocardial infarction. FASEB J : official publication of the .Fed Am Soc Exp Biol. 21 (12), 3197-3207 (2007).
  33. Dvir, T., et al. Prevascularization of cardiac patch on the omentum improves its therapeutic outcome. PNAS. 106 (35), 14990-14995 (2009).
  34. Marsano, A., et al. The effect of controlled expression of VEGF by transduced myoblasts in a cardiac patch on vascularization in a mouse model of myocardial infarction. Biomaterials. 34 (2), 393-401 (2013).
  35. Rufaihah, A. J., et al. Enhanced infarct stabilization and neovascularization mediated by VEGF-loaded PEGylated fibrinogen hydrogel in a rodent myocardial infarction model. Biomaterials. 34 (33), 8195-8202 (2013).
  36. Nillesen, S. T. M., et al. Increased angiogenesis in acellular scaffolds by combined release of FGF2 and VEGF. J of Contr Release. 116 (2), e88-e90 (2006).
  37. Sekine, H., et al. In vitro fabrication of functional three-dimensional tissues with perfusable blood vessels. Nat Commun. 4, 1399 (2013).
  38. Tee, R., et al. Transplantation of engineered cardiac muscle flaps in syngeneic rats. Tiss eng. Part A. (19-20), 1992-1999 (2012).
  39. Morritt, A. N., et al. Cardiac tissue engineering in an in vivo vascularized chamber. Circulation. 115 (3), 353-360 (2007).
check_url/kr/52984?article_type=t

Play Video

Cite This Article
Egozi, D., Shandalov, Y., Freiman, A., Rosenfeld, D., Ben-Shimol, D., Levenberg, S. Engineered Vascularized Muscle Flap. J. Vis. Exp. (107), e52984, doi:10.3791/52984 (2016).

View Video