Summary

激酶底物对鉴定使用高通量筛选

Published: August 29, 2015
doi:

Summary

Protein phosphorylation is a central feature of how cells interpret and respond to information in their extracellular milieu. Here, we present a high throughput screening protocol using kinases purified from mammalian cells to rapidly identify kinases that phosphorylate a substrate(s) of interest.

Abstract

我们已经开发出一种筛选平台,以确定专用人蛋白激酶磷酸化的底物,可用于阐明新的信号转导途径。我们的方法的特征是使用纯化的GST标记的人蛋白激酶的文库和感兴趣的重组蛋白衬底。我们已经用这种技术来识别的MAP /微管亲合性 – 调节激酶2(MARK2)作为激酶的葡萄糖调节站点上CREB稳压转录辅激活2(CRTC2),所需的β细胞增殖的蛋白质,以及AXL家族酪氨酸激酶的作为细胞转移的磷酸化的衔接蛋白ELMO的调节剂。我们描述这种技术,并讨论如何帮助建立细胞对环境刺激如何应对一个全面的地图。

Introduction

蛋白质的翻译后修饰(翻译后修饰)是细胞内的通信是必不可少的。也许最好的研究了所有翻译后修饰是磷酸化,由蛋白激酶,从而调节的蛋白质的功能,包括它们的生化活性,亚细胞定位,构象和稳定性无数催化。关于靶蛋白磷酸化位点的鉴定可以通过胰蛋白酶磷酸肽映射或通过使用富含磷酸化肽1,2-样品现在标准蛋白质组技术来完成。而四分之三的表达蛋白质组预计被磷酸和3所识别200000磷酸化位点5,据估计高达1 亿 6,许多这些没有分配的生物学,信号传导途径,或蛋白激酶。

虽然识别磷酸化位点是相对简单的,相对更大的挑战是,鉴定同源激酶(s)表示,针对这些网站,我们称为映射激酶的方法:基片对。几种方法用于鉴定激酶:基板对已经描述,无论是在开始用感兴趣的激酶和寻找其底物或开始与感兴趣的基板,并试图找到改性激酶实验7-11或计算12。为了鉴定激酶为已知的磷酸化底物,生物信息学可以用来识别包含氨基酸侧翼磷酸化残基(共识位点),以及识别形成沉淀络合物与基板激酶短保守序列的蛋白质。然而,这些方法是耗时,经常不与成功。

我们开发了一个系统功能的方法来迅速查明激酶磷酸化可以在给定基片13。屏幕试验产生优良的比性,具有非常明确的选择潜在的同源激酶。鉴于磷酸化生物信号的中心地位,画面中几乎所有的细胞信号通路14-16用于发现有用的。屏幕包括与人蛋白激酶的文库进行大规模激酶测定。所述激酶已被标记为细菌谷胱甘肽-S-转移酶(GST)蛋白和从哺乳动物细胞提取物纯化的,这意味着该重组酶 – 不同于那些来自细菌制备 – 将在上游蛋白激酶经常所需的存在而产生重组酶具有体外活性。实际上,虽然所需的下游激酶活化丝氨酸,苏氨酸,和酪氨酸激酶活性是存在于酵母10中,酵母基因组编码122蛋白激酶,指示所述哺乳动物激酶组,有超过500个基因17,已成为显著更加复杂,以边条忒独特高阶生物体的过程。此外,相关的细胞生物学和人类疾病(如小分子,生长因子,激素, 等等)不同的刺激的效果可以用来14,15调节激酶活性在一个适当的范围内。

Protocol

1.准备试剂,板,和细胞制成500 ml的裂解缓冲液:25毫摩尔Tris pH值7.5,150mM的氯化钠,50mM的氟化钠,0.5mM EDTA的pH为8.0,0.5%的TritonX-100,5mM的β-内甘油,5%甘油。保存在4℃。使用,添加1mM的二硫苏糖醇(DTT),1mM的苯甲基磺酰氟(PMSF),和1mM钒酸钠之前立即。在该步骤之后,PMSF中不需要任何漂洗缓冲液中。 使将20ml 10×激酶缓冲液:200毫摩尔Tris pH为7.5,50mM的β-内甘油(FW 216),2mM…

Representative Results

来自屏幕代表性的结果示于图2。180激酶使用来自CRTC2以及经典激酶测定衬底髓鞘碱性蛋白(MBP)相应于氨基酸268-283一个GST-标记的肽底物进行筛选。只有两个激酶MARK2和高度相关激酶磷酸化MARK3的CRTC2肽。 MBP被包括在所有测定中的内部对照,因为它包含了许多可磷酸化的残基,并运行在18 kDa的,朝向所述凝胶的底部。这允许特异性的解释:有些激酶将有力磷酸化底物和MBP。…

Discussion

由于原来的出版物描述的方法14,15,180 GST-激酶原库已扩大到420件,或约80%的人类蛋白质激酶组的。与膨胀的文库,如所描述的协议需要4-5天,然后1-4天来开发薄膜(认为必要),这可以通过使用磷光和数字信号增强的缩短。有些情况必须注意几个关键步骤( 见图 1协议的概述)。第一,是细胞的股票的健康(无支原体,决不允许在膨胀过程中达到汇合,并用胰蛋白酶在每次…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由NSERC经费资助 386634.我们想感谢Screaton实验室成员,有益的讨论。

Materials

Lysis buffer Made in house See Protocol step 1.1
10x kinase buffer Made in house See Protocol step 1.2
10x M-ATP Made in house See Protocol step 1.3
Human kinase plasmids Orfeome, Invitrogen, Origene GST-tagged in house
96 well plates Fisher Scientific CS003595
293T cells ATCC CRL-11268
DMEM  Fisher Scientific SH3002201 supplement with 100U/ml penicillin, 100ug/ml streptomycin, 10% fetal calf serum.
CO2 incubator Sanyo MCO-17AIC
15 cm cell culture dishes Fisher Scientific 877224
Reduced serum medium Invitrogen 22600-050
Lipid-based transfection reagent Invitrogen 11668-019
Automated liquid dispenser Thermo Scientific 5840300
Small cassette attachment Thermo Scientific 24073295
Standard cassette attachment Thermo Scientific 14072670
4mM pervanadate Made in house See Protocol step 3.1
0.25 M CaCl2 Made in house
Multichannel pipette (20-200 uL) Labnet p4812-200
Multichannel pipette (1-10 uL) Thermo Scientific 4661040
V-bottom 6-well plates Evergreen Scientific 290-8116-01V
Glutathione coated 96-well plates Fisher Scientific PI-15240
Hybridization oven Biostad 350355
GST tagged substrate Made in house
Myelin Basic Protein (MBP) Sigma M1891
Repeater pipette (1 mL) Eppendorf 22266209
32P gamma-ATP Perkin Elmer BLU502Z500UC
2X SDS lysis buffer (100 mL) Made in house See Protocol step 1.4
26-well precast TGX gels BioRad 567-1045 gel percentage required is dependent on the molecular weight of the substrate of interest
Coomassie stain Made in house 0.1% Coomassie R250, 10% acetic acid, 40% methanol
Coomassie destain Made in house 10% acetic acid, 20% methanol
Labeled gel containers Made in house Used plastic lids from empty tip boxes, just big enough to contain one gel
Whatman filter paper Fisher Scientific 57144
Cellophane sheets (2) BioRad 165-0963
Gel dryer Labconco 4330150
Double emulsion autoradiography film VWR IB1651454
Film cassette Fisher Scientific FBAC-1417
Intensifying screen Fisher Scientific FBIS-1417
Plate sealing rubber roller Sigma R1275

References

  1. Meisenhelder, J., Hunter, T., van der Geer, P. Phosphopeptide mapping and identification of phosphorylation sites. Curr Protoc Mol Biol. 18, Unit 18 19 (2001).
  2. Doll, S., Burlingame, A. L. Mass spectrometry-based detection and assignment of protein posttranslational modifications. ACS chem. 10, 63-71 (2015).
  3. Sharma, K., et al. Ultradeep human phosphoproteome reveals a distinct regulatory nature of Tyr and Ser/Thr-based signaling. Cell rep. 8, 1583-1594 (2014).
  4. Cohen, P. The regulation of protein function by multisite phosphorylation–a 25 year update. Trends Biochem Sci. 25, 596-601 (2000).
  5. Walsh, C. T. . Posttranslation Modification of Proteins: Expanding Nature’s Inventory. , (2006).
  6. Boersema, P. J., et al. In-depth qualitative and quantitative profiling of tyrosine phosphorylation using a combination of phosphopeptide immunoaffinity purification and stable isotope dimethyl labeling. Mol Cell Proteomics. 9, 84-99 (2010).
  7. Hutti, J. E., et al. A rapid method for determining protein kinase phosphorylation specificity. Nat Methods. 1, 27-29 (2004).
  8. Johnson, S. A., Hunter, T. Kinomics: methods for deciphering the kinome. Nat Methods. 2, 17-25 (2005).
  9. Pawson, T., Nash, P. Assembly of cell regulatory systems through protein interaction domains. Science. 300, 445-452 (2003).
  10. Zhu, H., et al. Analysis of yeast protein kinases using protein chips. Nat Genet. 26, 283-289 (2000).
  11. Shah, K., Shokat, K. M. A chemical genetic approach for the identification of direct substrates of protein kinases. Methods Mol Biol. 233, 253-271 (2003).
  12. Zou, L., et al. PKIS: computational identification of protein kinases for experimentally discovered protein phosphorylation sites. BMC bioinform. 14, 247 (2013).
  13. Varjosalo, M., et al. Application of active and kinase-deficient kinome collection for identification of kinases regulating hedgehog signaling. Cell. 133, 537-548 (2008).
  14. Jansson, D., et al. Glucose controls CREB activity in islet cells via regulated phosphorylation of TORC2. Proc Natl Acad Sci U S A. 105, 10161-10166 (2008).
  15. Fu, A., Screaton, R. A. Using kinomics to delineate signaling pathways: control of CRTC2/TORC2 by the AMPK family. Cell Cycle. 7, 3823-3828 (2008).
  16. Abu-Thuraia, A., et al. Axl phosphorylates elmo scaffold proteins to promote rac activation and cell invasion. Mol Cell Biol. 35, 76-87 (2015).
  17. Manning, G., Whyte, D. B., Martinez, R., Hunter, T., Sudarsanam, S. The protein kinase complement of the human genome. Science. 298, 1912-1934 (2002).
check_url/kr/53152?article_type=t

Play Video

Cite This Article
Reeks, C., Screaton, R. A. Identification of Kinase-substrate Pairs Using High Throughput Screening. J. Vis. Exp. (102), e53152, doi:10.3791/53152 (2015).

View Video