Summary

ラット腸間膜に微小血管透過性の調節を調査するために、微小灌流法

Published: September 12, 2015
doi:

Summary

The modified Landis technique enables paired measurement of the hydraulic conductivity of individual microvessels in the mesentery of normal and genetically modified rats under control and test conditions using microperfusion techniques. It provides a convenient method to evaluate mechanisms that regulate microvessel permeability and transvascular exchange under physiological conditions.

Abstract

個別灌流微小血管の透過性を測定するための実験は、培養内皮細胞単層全体微小血管床の機能交換特性における血管透過性を調節する分子・細胞メカニズムの調査の間のブリッジを提供します。カニューレを挿入し、ラット腸間膜の細静脈微小血管を灌流し、微小血管壁の透水係数を測定する方法が記載されています。必要な主要機器は、3つの異なるマイクロツールを配置するためにマイクロマニピュレーターをサポートし、大きな修正段階で生体顕微鏡含まれています:微小血管にカニューレを挿入し、潅流する(1)面取りガラスマイクロピペットを、 (2)ガラスマイクロオクルーダ一過かん流を遮断し、測定された静水圧で経水流の運動の測定を可能にし、(3)鈍いガラス棒は、カニュレーション部位で腸間膜組織を安定化させることにします。修正されたランディスマイクロ閉塞techniqUEは、微小血管を横切るように、これらの実験条件は変更される流れと静水圧とコロイド浸透圧の差の繰り返し測定を慎重に制御される可能も経流体運動のマーカーとして人工灌流液中に懸濁させた赤血球を使用し、。第一制御灌流液を使用して、透水係数の測定、試験灌流液と同じ微小血管の再挿管後に、これらのよく制御された条件下での微小血管応答の一対比較を可能にします。なぜなら、マウスの腸間膜に長いストレートと分岐していない微小血管の不在で厳しく制限された血管透過性を変更することが予想遺伝子改変マウスでの腸間膜に微小血管にメソッドを拡張しようとしますが、使用して、同様の遺伝子改変ラットの最近の可用性CRISPR / Cas9技術は、本明細書に記載の方法を適用することができる研究の新しい分野を開くことが期待されます。 </P>

Introduction

血管系における微小灌流は、通常、直径が40μm未満の血管内にマイクロピペットを介し既知の組成の人工灌流液の流れを制御する確立することを伴います。灌流容器は通常の組織環境内のままで、挿管時に動物の血液を上にして灌流されます。ビデオイメージングまたは蛍光技術の範囲と併せて使用される場合、 その場での微小灌流これらのフローのための駆動力が知られており、血管壁の透過性特性があることができる条件下で、微小血管の壁を横切って水と溶質の流れを測定することができます直接評価。さらに、組織(灌流液とsuperfusate)で微小血管の周囲の流体の組成を制御することにより、微小血管の透過性や為替の規制は、電子の多様にさらされる微小血管の壁を形成する内皮細胞を有効にして調べることができますxperimental条件の時間の正確に測定期間(時間秒)のために(アゴニスト、修正された灌流条件、蛍光指示薬は、細胞内の組成およびシグナル伝達を測定します)。加えて、障壁を調節する重要な細胞の分子構造の超微細または細胞化学的評価は、透過性が直接測定されるのと同じ微小血管に調べることができます。アプローチは、それによって、培養内皮細胞単層および無傷の微小血管における調査に内皮バリア機能を変更するための細胞および分子メカニズムの調査の間にブリッジを形成しています。さらなる評価1-6については、以下のレビューを見ます。

微小灌流の制限は、それだけで、薄く透明であり、ガラスマイクロピペットでのカニューレ挿入を可能にするのに十分な構造的完全性を有している微小血管床で使用することができることです。初期の研究は、腸間膜と薄い皮膚狭心症Mにカエルの微小血管を使用している間7,8 uscle、はるかに哺乳動物のモデルの中で最も一般的に使用される製剤は、ラットの腸間膜9-15です。ほとんどの調査は1-4時間の期間にわたって研究し、血管透過性の急性変化に焦点を当ててきたが、より最近の研究は、初期灌流12,16の後に個々の容器での測定に24〜72時間を拡張されています。血管透過性の調節17を研究するためのより多くの遺伝的に改変されたラットモデルを利用できるようにすることを約束し、最近開発されたCRISPR技術は、これらの重要な新しいラットモデルで腸間膜の細静脈微小血管に適用されるこの通信に記載されている方法を有効にする必要があります。

方法は、動物の準備と灌流容器に近い位置のマイクロツールに使用される少なくとも三つのマイクロマニピュレーターの両方を保持するために、容器に灌流マイクロピペットを整列させるために十分な大きさの特注の顕微鏡ステージを備えた倒立顕微鏡を必要としますルーメン。例えばXY顕微鏡ステージ(約90×60センチメートル)のカスタムプラットフォームは防錆コーティングで厚さ1cmの鋼板から製造することができます。ステージは、エンジニアリングインデックステーブルまたは水平面内での移動のためにテフロンピラーやボール転送に直角に取り付けられており、サポートされている2つの鳩尾スライドに取り付けられています。典型的なリグ図2参照)は、血管平滑の単一血管の血流およびヘマトクリット、血液灌流微小血管による局所的酸素運搬、規制を測定するものなど生体内微小循環実験の範囲に使用する顕微鏡や微細位置決め装置と多くの共通点を持っています筋緊張、および全体の循環に注入された蛍光トレーサーの局所的な微小血管の蓄積。18-26

技術の基本的な側面は、微小血管壁の定義された表面積(S)全体の体積流量(JのV)の測定です。達成するためにこれは、本明細書に記載の修正ランディス技術によって、単純な倒立顕微鏡で十分です。小型ビデオカメラは、追加された時間基準と、画像ポートとビデオ信号上に搭載されたビデオモニタに表示され、コンピュータ上のデジタル形態又はビデオレコーダのデジタルまたはアナログ信号のいずれかとして記録されています。微小血管がカニューレを挿入されると、カメラに見える微小血管の一部が挿管を中断することなくユニットとしてステージとマニピュレータを移動することによって変更することができます。

経フローの測定はまた、溶質透過性の測定に使用リグ、蛍光細胞質カルシウムまたは他の細胞機構の比率を監視し、共焦点イメージング6,12,13、などの適切なフィルタを使用して洗練された蛍光顕微鏡を使用して、より詳細な調査と組み合わせてもよいです27。すべての微小灌流アプローチの重要な利点は、同じ容器に、反復測定を行うことができることですこのような静水圧および膠質浸透圧、または炎症状態に血管応答の誘発性変化として駆動力の制御された変化の下で。最も一般的な設計は、第二のピペットで、その後、ベースラインの透過性の状態を確立するために、第一の制御灌流液と赤の細胞懸濁液を充填したマイクロピペットを介して灌流容器と同じ容器に測定透水(のL p)の一対比較であります試験薬剤と灌流液に加えます。複数のカニューレ挿入は、制御ピペットで再灌流後に繰り返しサイクルで可能です。

現在のプロトコルでは、微小血管の壁を越えた水フラックスを記録し、血管壁のL P、そのまま全体の水と溶質のための共通の経路の透過性の有用な指標を測定するために、ラットの腸間膜に小静脈血管のカニュレーションおよび微小灌流を実証内皮障壁。手順が変更されたランディスtechniqと呼ばれています灌流がブロックされた後、経流体の交換の目安として、赤血球の相対的な動きを使用して、元のランディス原理は28に保存されているので、UEが、実験条件例えば、微小血管壁全体の静水圧およびアルブミン膠質浸透圧の差)の範囲微小灌流後に使用可能にuncannulated血液灌流微小血管8,29に比べてはるかに大きいです。

Protocol

倫理の声明:すべての手順を検討し、施設内動物管理使用委員会によって承認されました。 マイクロピペット、レストレーナー、およびブロッカーの1予備作製引っ張ったときにそのように調整電子プラーを使用して半分にいくつかのきれいなホウケイ酸ガラスキャピラリーチューブを引っ張り、チューブの延伸部分の長さは約1cmであり、2つの半体がいくらか対?…

Representative Results

図4は、4つの灌流液で連続的にカニューレを挿入微小血管細静脈ラットにL Pにおける変化の時間経過を測定し結果を示す。33定圧で算出さL pの大きさは、微小血管壁の透過性の変化の指標として使用された、第一容器を10 nMのBkのを含む第二のマイクロピペットを用いて炎症剤のブラジキニン(BK)に暴露したときに1%ウシ血清アルブミンを含有する灌流?…

Discussion

L p計算の詳細。容器が自由に灌流されている間経流体運動が起こるが、それは通常、血管灌流速度の0.01%未満であるため、そのような交換は無料灌流の間に測定することがあまりにも小さいです。しかし灌流は一過性微小血管を閉塞することにより停止したときのように、マーカー赤血球や閉塞部位との間の流体の列が短くなるように、経フロー( すなわち

Disclosures

The authors have nothing to disclose.

Acknowledgements

この作品は、国立衛生研究所HL44485とHL28607を付与することによってサポートされていました。

Materials

MICROSCOPE, TABLE AND STAGE
inverted microscope (metallurgical type) with trinocular head for video: example Olympus CK-40 try to place eyepieces higher relative to stage–you have to look through eyepieces while reaching around to top of stage over intervening micromanipulators
inverted microscope (metallurgical type) with trinocular head for video: example Leica DMIL try to place eyepieces higher relative to stage–you have to look through eyepieces while reaching around to top of stage over intervening micromanipulators
narrow diameter, long working distance objective: example Nikon Nikon E Plan 10×/0.25 LWD
stage platform–1/2 inch or 1 cm sheet steel welding shop this should be heavy to reduce vibration
Unislide x-y table: dove tail slides Velmex AXY4006W1
VIDEO
CCD video camera: example Pulnix TM-7CN (no longer available) no color needed
video capture system with audio–generic
video playback system (completely still frame, single frame motion)
small microphone
MICROMANIPULATORS, HOLDERS
micromanipulator, XYZ (3) Prior/Stoelting (no longer available) look for fine Z, and larger range of travel in coarse drives for ease of positioning
hydraulic probe drive, one way FHC 50-12-1C need to buy either manual drive or electronic drive
manual drum drive  FHC 50-12-9-02
or hydraulic drive, 3 way Siskiyou Corporation MX610 (1-way) or MX630 (3-way) great for short arms, water filled and must be sent back for refill ~every 2 years
connectors/rods/holders Siskiyou Corporation MXC-2.5, MXB etc.
pin vise Starrett 162C to hold restrainer
pipette holder World Prescision Instruments MPH3
water manometer ~120 cm
MICROSCOPE TRAY
clear Plexiglas for microscope tray for animal
3/4 inch polished quartz disc ~1/4 inch tall Quartz Scientific Inc. custom  (or polished plexiglass, glass); make sure the height is less than working distance of objective
Plexiglas glue (Weld-on 4: CAUTION CARCINOGEN)
medical adhesive for tissue well NuSil MED-1037
All-purpose silicone rubber heat mat, 5" L x 2" W Cole Parmer EW-03125-20 heater for microscope tray–needs cord and controller–240V version available
Power Cord Adapter for Kapton Heaters and Kits, 6 ft, 120 VAC Cole Parmer EW-03122-75
STACO 3PN1010B Variable-Voltage Controller, 10 A; 120 V In, 0-140 V Out Cole Parmer EW-01575-00
PIPET MANUFACTURE
vertical pipette puller Sutter Instrument Company P-30 with nichrome filament
1.5 mm OD thin wall capillary tubing Sutter Instrument Company B150-110-10
pipette grinder air stone and dissection microscope–see reference in text or purchase a package from Sutter Instruments or World Precision Instruments
RX Honing Machine, System II RX Honing Machine Corporation MAC-10700 Rx System II Machine alternative for air stone, use with a dissecting microscope mounted at an angle
   with ceramic sharpening disc RX Honing Machine Corporation use "as is" or attach lapping film
lapping film sheets, 0.3 or 0.5 um 3M part no. 051144 80827 268X Imperial lapping film sheets with adhesive back–can be purchased from Amazon

References

  1. Curry, F. R. Permeability measurements in an individually perfused capillary: the ‘squid axon’ of the microcirculation. Experimental physiology. 93, 444-446 (2008).
  2. Curry, F. R., Adamson, R. H. Vascular permeability modulation at the cell, microvessel, or whole organ level: towards closing gaps in our knowledge. Cardiovasc Res. 87, 218-229 (2010).
  3. Curry, F. R., Adamson, R. H. Tonic regulation of vascular permeability. Acta physiologica. 207, 628-649 (2013).
  4. Michel, C. C. Fluid exchange in the microcirculation. The Journal of physiology. 557, 701-702 (2004).
  5. Tarbell, J. M., Simon, S. I., Curry, F. R. Mechanosensing at the vascular interface. Annual review of biomedical engineering. 16, 505-532 (2014).
  6. Sarelius, I. H., Kuebel, J. M., Wang, J., Huxley, V. H. Macromolecule permeability of in situ and excised rodent skeletal muscle arterioles and venules. American journal of physiology. Heart and circulatory physiology. 290, H474-H480 (2006).
  7. Curry, F. E., Frokjaer-Jensen, J. Water flow across the walls of single muscle capillaries in the frog, Rana pipiens. The Journal of physiology. 350, 293-307 (1984).
  8. Michel, C. C., Mason, J. C., Curry, F. E., Tooke, J. E., Hunter, P. J. A development of the Landis technique for measuring the filtration coefficient of individual capillaries in the frog mesentery. Q J Exp Physiol Cogn Med Sci. 59, 283-309 (1974).
  9. Adamson, R. H., Zeng, M., Adamson, G. N., Lenz, J. F., Curry, F. E. PAF- and bradykinin-induced hyperpermeability of rat venules is independent of actin-myosin contraction. American journal of physiology, Heart and circulatory physiology. 285, H406-H417 (2003).
  10. Huxley, V. H., Rumbaut, R. E. The microvasculature as a dynamic regulator of volume and solute exchange. Clinical and experimental pharmacology, & physiology. 27, 847-854 (2000).
  11. Rumbaut, R. E., Wang, J., Huxley, V. H. Differential effects of L-NAME on rat venular hydraulic conductivity. American journal of physiology, Heart and circulatory physiology. , 279-H2023 (2000).
  12. Yuan, D., He, P. Vascular remodeling alters adhesion protein and cytoskeleton reactions to inflammatory stimuli resulting in enhanced permeability increases in rat venules. Journal of applied physiology. 113, 1110-1120 (2012).
  13. Zhou, X., He, P. Temporal and spatial correlation of platelet-activating factor-induced increases in endothelial [Ca(2)(+)]i, nitric oxide, and gap formation in intact venules. American journal of physiology, Heart and circulatory physiology. 301, H1788-H1797 (2011).
  14. Adamson, R. H., et al. Oncotic pressures opposing filtration across non-fenestrated rat microvessels. The Journal of physiology. 557, 889-907 (2004).
  15. Adamson, R. H., et al. Epac/Rap1 pathway regulates microvascular hyperpermeability induced by PAF in rat mesentery. American journal of physiology, Heart and circulatory physiology. 294, H1188-H1196 (2008).
  16. Curry, F. E., Zeng, M., Adamson, R. H. Thrombin increases permeability only in venules exposed to inflammatory conditions. American journal of physiology, Heart and circulatory physiology. 294, H1188-H1196 (2003).
  17. Sander, J. D., Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nature. 32, 347-355 (2014).
  18. Bagher, P., Davis, M. J., Segal, S. S. Intravital macrozoom imaging and automated analysis of endothelial cell calcium signals coincident with arteriolar dilation in Cx40(BAC) -GCaMP2 transgenic mice. Microcirculation. 18, 331-338 (2011).
  19. Duza, T., Sarelius, I. H. Increase in endothelial cell Ca(2+) in response to mouse cremaster muscle contraction. The Journal of physiology. 555, 459-469 (2004).
  20. Oshiro, H., et al. L-type calcium channel blockers modulate the microvascular hyperpermeability induced by platelet-activating factor in vivo. Journal of vascular surgery. 22, 732-739 (1995).
  21. Chen, W., et al. Atrial natriuretic peptide-mediated inhibition of microcirculatory endothelial Ca2+ and permeability response to histamine involves cGMP-dependent protein kinase I and TRPC6 channels. Arteriosclerosis, thrombosis, and vascular biology. 33, 2121-2129 (2013).
  22. Harris, N. R., Whitt, S. P., Zilberberg, J., Alexander, J. S., Rumbaut, R. E. Extravascular transport of fluorescently labeled albumins in the rat mesentery. Microcirculation. 9, 177-187 (2002).
  23. Yuan, W., Li, G., Zeng, M., Fu, B. M. Modulation of the blood-brain barrier permeability by plasma glycoprotein orosomucoid. Microvascular research. 80, 148-157 (2010).
  24. Sugiura, Y., Morikawa, T., Takenouchi, T., Suematsu, M., Kajimura, M. Cilostazol strengthens the endothelial barrier of postcapillary venules from the rat mesentery in situ. Phlebology / Venous Forum of the Royal Society of Medicine. 29, 594-599 (2014).
  25. Guo, M., et al. Fibrinogen-gamma C-terminal fragments induce endothelial barrier dysfunction and microvascular leak via integrin-mediated and RhoA-dependent mechanism. Arteriosclerosis, thrombosis, and vascular biology. 29, 394-400 (2009).
  26. Dewar, A. M., Clark, R. A., Singer, A. J., Frame, M. D. Curcumin mediates both dilation and constriction of peripheral arterioles via adrenergic receptors. The Journal of investigative dermatology. 131, 1754-1760 (2011).
  27. Lee, J. F., et al. Balance of S1P1 and S1P2 signaling regulates peripheral microvascular permeability in rat cremaster muscle vasculature. American journal of physiology, Heart and circulatory physiology. 296, H33-H42 (2009).
  28. Landis, E. M. Microinjection studies of capillary permeability. II. The relation between capillary pressure and the rate at which fluid passes through the walls of single capillaries. Am J Physiol. 82, 217-238 (1927).
  29. Curry, F. E., Huxley, V. H., Sarelius, I. H., Linden, R. J. . Techniques in cardiovascular physiology Part 1. P3/1, 1-34 (1983).
  30. Vurek, G. G., Bennett, C. M., Jamison, R. L., Troy, J. L. An air-driven micropipette sharpener). J Appl Physiol. 22, 191-192 (1967).
  31. Curry, F. E., Clark, J. F., Adamson, R. H. Erythrocyte-derived sphingosine-1-phosphate stabilizes basal hydraulic conductivity and solute permeability in rat microvessels. American journal of physiology, Heart and circulatory physiology. 303, H825-H834 (2012).
  32. Bagher, P., Polo-Parada, L., Segal, S. S. Microiontophoresis and micromanipulation for intravital fluorescence imaging of the microcirculation. Journal of visualized experiments : JoVE. , (2011).
  33. Adamson, R. H., et al. Attenuation by sphingosine-1-phosphate of rat microvessel acute permeability response to bradykinin is rapidly reversible. American journal of physiology, Heart and circulatory physiology. 302, H1929-H1935 (2012).
  34. Bates, D. O. Vascular endothelial growth factors and vascular permeability. Cardiovasc Res. 87, 262-271 (2010).
  35. Adamson, R. H., et al. Rho and rho kinase modulation of barrier properties: cultured endothelial cells and intact microvessels of rats and mice. The Journal of physiology. 539, 295-308 (2002).
  36. Curry, F. R., et al. Atrial natriuretic peptide modulation of albumin clearance and contrast agent permeability in mouse skeletal muscle and skin: role in regulation of plasma volume. The Journal of physiology. 588, 325-339 (2010).
  37. Neal, C. R., Bates, D. O. Measurement of hydraulic conductivity of single perfused Rana mesenteric microvessels between periods of controlled shear stress. The Journal of physiology. 543, 947-957 (2002).
  38. Adamson, R. H., et al. Albumin modulates S1P delivery from red blood cells in perfused microvessels: mechanism of the protein effect. American journal of physiology, Heart and circulatory physiology. 306, H1011-H1017 (2014).
  39. Huxley, V. H., Wang, J. J., Sarelius, I. H. Adaptation of coronary microvascular exchange in arterioles and venules to exercise training and a role for sex in determining permeability responses. American journal of physiology, Heart and circulatory physiology. 293, H1196-H1205 (2007).
  40. Huxley, V. H., Williams, D. A. Basal and adenosine-mediated protein flux from isolated coronary arterioles. Am J Physiol. 271, H1099-H1108 (1996).
  41. Davis, M. J., Gore, R. W. Double-barrel pipette system for microinjection. Am J Physiol. 253, H965-H967 (1987).
  42. Adamson, R. H., et al. Sphingosine-1-phosphate modulation of basal permeability and acute inflammatory responses in rat venular microvessels. Cardiovasc Res. 88, 344-351 (2010).
  43. Zeng, Y., Adamson, R. H., Curry, F. R., Tarbell, J. M. Sphingosine-1-phosphate protects endothelial glycocalyx by inhibiting syndecan-1 shedding. American journal of physiology, Heart and circulatory physiology. , H306-H363 (2014).

Play Video

Cite This Article
Curry, F. E., Clark, J. F., Adamson, R. H. Microperfusion Technique to Investigate Regulation of Microvessel Permeability in Rat Mesentery. J. Vis. Exp. (103), e53210, doi:10.3791/53210 (2015).

View Video