Summary

Layer-by-lags Syntese og overførsel af Fritstående Konjugerede Mikroporøse Polymer Nanomembranes

Published: December 15, 2015
doi:

Summary

In this paper we describe the interfacial synthesis of conjugated microporous polymers (CMP) on sacrificial substrates, and the dissolution of the substrate for the preparation of freestanding CMP nanomembranes. In addition, we will describe how the fragile nanomembranes can be transferred to other substrates.

Abstract

CMP som store overfladeareal materialer har stigende interesse for nylig, på grund af deres høje variabilitet i inkorporering af funktionelle grupper i kombination med deres fremragende termiske og kemiske stabilitet og lave densiteter. Men deres uopløselige natur forårsager problemer i deres bearbejdning, da normalt anvendte teknikker såsom spin-coating er ikke tilgængelige. Især for membran applikationer, hvor behandlingen af ​​CMP som tynde film er ønskeligt, har problemer med behandlingen hindret deres kommercielle anvendelse.

Her beskriver vi grænsefladespændingen syntese af CMP tynde film på funktionaliserede substrater via molekylær lag-på-lag (LBL) syntese. Denne fremgangsmåde tillader fremstilling af film med ønsket tykkelse og sammensætning og endda ønskede sammensætning gradienter.

Anvendelsen af ​​offer understøtninger tillader fremstilling af fritstående membraner ved opløsning af bæreren eftersyntesen. Til at håndtere sådanne ultra-tynde fritstående membraner beskyttelse med ofringer belægninger viste meget lovende, for at undgå brud på nanomembranes. For at overføre nanomembranes til den ønskede substrat, er de overtrukne membraner upfloated ved luft-væske-grænsefladen og overføres derefter via dip coating.

Introduction

The preparation of ultra-thin polymer membranes is of high interest for applications in gas separation and nanofiltration. Challenges in the synthesis are represented by (a) the control of the membrane thickness and the homogeneity and (b) transfer of such fragile membranes. To overcome challenge (a), molecular layer-by-layer synthesis1 has shown great promise in controlling the thickness and homogeneity of thin films grown at the solid-liquid interface.2,3 Controlling the number of layers linearly controls the film thickness. The l-b-l method has been successfully used to fabricate surface mounted metal organic frameworks (SURMOFs),4-7 also the synthesis of thin polymer films via l-b-l reaction of polymer chains was demonstrated.8 The challenge (b) concerns the handling of these ultra-thin membranes. To avoid rupture or wrinkling of the nanomembranes sacrificial supports of coatings have shown great promise. 9

Here we will present a detailed protocol for synthesis of conjugated microporous polymer (CMP)10-13 thin films through sequential addition of the molecular building blocks, with desired thickness and composition. The preparation of free-standing CMP nanomembranes is achieved by using a sacrificial support. To handle and transfer the CMP nanomembranes to other supports we will describe a simple protocol to protect the membranes with sacrificial coatings and their upfloating to the liquid air interface and subsequent transfer using dip-coating.

Protocol

1. Syntese af CMP Thin Films gennem sekventiel tilsætning Self-samlet monolag (SAM) funktionalisering af guld på glimmer. Forberede 1 mM opløsning af 11-thioacetyl-undecan syre-propargyl amid 14 i ethanol (SAM-opløsning). Bland ved hjælp ultralydsbad Til opløsningen er klar. Beskytter flasken mod lys ved hjælp af aluminiumsfolie. Opnå guld belagt glimmer wafer under argon. Efter tilbagetrækning fra opbevaringsbeholderen nedsænkes glimmer wafer direkte til SAM-lø…

Representative Results

Membranerne er karakteriseret ved infrarød refleksion absorptionsspektroskopi (IRRAS). 16 Figur 4 viser IRRA-spektre fra en CMP-membran overført til en guld wafer. Typiske bands fra vibrationerne af aromatisk rygrad er i 1.605 cm -1, 1.515 cm-1 og 1.412 cm-1. Uomsatte alkyn- og azidgrupper kan observeres ved karakteristiske bånd på 2.125 cm-1 og 1.227 cm -1. Figur 5 viser en scanning elektronmikroskop…

Discussion

Til syntesen af ​​CMP-film opløsningen af ​​katalysatoren skal være frisk. En brudt katalysator (dvs. oxideret) er angivet med en blå farvning af opløsningen. Den friske væske er farveløs.

Et afgørende punkt er at skære kanterne af glimmer substratet efter spin-coating PMMA. Også skal skæres defekter i substratet, dvs. hver plet var PMMA kan komme i kontakt med glimmer substrat, på grund af en manglende guldlag. Ellers guldlaget kan ikke strippes fra glim…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Acetone VWR BDH Prolabo 20066.330 AnalR NORMAPUR
Potassium iodide VWR BDH Prolabo 26846.292 AnalR NORMAPUR
Ethyl acetate VWR BDH Prolabo 23882.321 AnalR NORMAPUR
Tetrahydrofurane (THF) VWR BDH Prolabo 28559.320 HiPerSolv CHROMANORM
THF waterfree Merck Millipore 1.08107.1001 SeccoSolv
Iodine Sigma-Aldrich 20,777-2
Tetrakis(acetonitrile)copper(I)hexafluoro-phosphate Sigma-Aldrich 346276-5G
Poly(methyl methacrylate) 996 kDa (PMMA) Sigma-Aldrich 182265-25G
1.1.1.1 Methanetetrayltetrakis(4-azidobenzene) (TPM-azide) provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to9
1.1.1.1 Methanetetrayltetrakis(4-ethinylenebenzene) (TPM-alkyne) provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to9
11-thioacetyl-undecaneacid propargylamide provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to8
gold/titan coated silicium-wafer Georg Albert PVD, 76857 Silz, Germany
gold coated mica Georg Albert PVD, 76857 Silz, Germany

References

  1. Lindemann, P., et al. Preparation of Freestanding Conjugated Microporous Polymer Nanomembranes for Gas Separation. Chemistry of Materials. 26 (24), 7193-71 (2014).
  2. Kim, M., et al. Preparation of Ultrathin Films of Molecular Networks through Layer-by-Layer Cross-Linking Polymerization of Tetrafunctional Monomers. Macromolecules. 44 (18), 7092-7095 (2011).
  3. Vonhören, B., et al. Ultrafast Layer-by-Layer Assembly of Thin Organic Films Based on Triazolinedione Click Chemistry. ACS Macro Letters. 4 (3), 331-334 (2015).
  4. Shekhah, O., et al. Step-by-Step Route for the Synthesis of Metal−Organic Frameworks. Journal of the American Chemical Society. 129 (49), 15118-15119 (2007).
  5. Shekhah, O., Wang, H., Zacher, D., Fischer, R. A., Wöll, C. Growth Mechanism of Metal–Organic Frameworks: Insights into the Nucleation by Employing a Step-by-Step Route. Angewandte Chemie International Edition. 48 (27), 5038-5041 (2009).
  6. Shekhah, O., Liu, J., Fischer, R. A., Wöll, C. MOF thin films: existing and future applications. Chemical Society Reviews. 40 (2), 1081-1106 (2011).
  7. Liu, J., et al. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation. Materials. 5 (9), 1581-1592 (2012).
  8. Such, G. K., Quinn, J. F., Quinn, A., Tjipto, E., Caruso, F. Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. Journal of the American Chemical Society. 128 (29), 9318-9319 (2006).
  9. Ai, M., et al. Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced Materials. 26 (21), 3421-3426 (2014).
  10. Jiang, J. -. X., Cooper, A. I. in Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis. Topics in Current Chemistry. (ed Martin Schröder) Ch. 293, 1-33 (2010).
  11. Dawson, R., Cooper, A. I., Adams, D. J. Nanoporous organic polymer networks. Progress in Polymer Science. 37 (4), 530-563 (2012).
  12. Muller, T., Bräse, S. Click Chemistry Finds Its Way into Covalent Porous Organic Materials. Angewandte Chemie International Edition. 50 (50), 11844-11845 (2011).
  13. Tsotsalas, M., Addicoat, M. A. Covalently linked organic networks. Frontiers in Materials. 2, (2015).
  14. Kleinert, M., Winkler, T., Terfort, A., Lindhorst, T. K. A modular approach for the construction and modification of glyco-SAMs utilizing 1,3-dipolar cycloaddition. Organic & Biomolecular Chemistry. 6 (12), 2118-2132 (2008).
  15. Plietzsch, O., et al. Four-fold click reactions: Generation of tetrahedral methane- and adamantane-based building blocks for higher-order molecular assemblies. Organic & Biomolecular Chemistry. 7, (2009).
  16. Greenler, R. G. Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. The Journal of Chemical Physics. 44 (1), (1966).

Play Video

Cite This Article
Lindemann, P., Träutlein, Y., Wöll, C., Tsotsalas, M. Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes. J. Vis. Exp. (106), e53324, doi:10.3791/53324 (2015).

View Video