Summary

層ごとの合成と自立共役高分子ナノ薄膜マイクロポーラスの譲渡

Published: December 15, 2015
doi:

Summary

In this paper we describe the interfacial synthesis of conjugated microporous polymers (CMP) on sacrificial substrates, and the dissolution of the substrate for the preparation of freestanding CMP nanomembranes. In addition, we will describe how the fragile nanomembranes can be transferred to other substrates.

Abstract

CMPのような大きな表面積材料は、それらのその優れた熱的および化学的安定性と組み合わせた官能基を組み込むことで高い可変性​​、及び低濃度に、最近関心を集めています。例えば、スピンコーティングなどの通常適用技術が利用できないので、それらの不溶性の性質は、それらの処理に問題を引き起こします。特にCMP薄膜としての処理が望まれる膜の用途のために、処理上の問題は、それらの商業的用途を妨げてきました。

ここでは、分子層ごと(LBL)合成により官能化基材上に、CMP薄膜の界面合成が記載されています。このプロセスは、所望の厚さおよび組成、さらには所望の組成勾配を有するフィルムの製造を可能にします。

犠牲支持体の使用は、後に、支持体の溶解によって自立膜の製造を可能にします合成。このような超薄型自立膜を処理するには、犠牲コーティングと保護は、ナノ薄膜の破裂を避けるために、大きな期待を示しました。所望の基板にナノ薄膜を転送するには、コーティングされた膜は、気液界面でのupfloatedした後、ディップコーティングを介して転送されます。

Introduction

The preparation of ultra-thin polymer membranes is of high interest for applications in gas separation and nanofiltration. Challenges in the synthesis are represented by (a) the control of the membrane thickness and the homogeneity and (b) transfer of such fragile membranes. To overcome challenge (a), molecular layer-by-layer synthesis1 has shown great promise in controlling the thickness and homogeneity of thin films grown at the solid-liquid interface.2,3 Controlling the number of layers linearly controls the film thickness. The l-b-l method has been successfully used to fabricate surface mounted metal organic frameworks (SURMOFs),4-7 also the synthesis of thin polymer films via l-b-l reaction of polymer chains was demonstrated.8 The challenge (b) concerns the handling of these ultra-thin membranes. To avoid rupture or wrinkling of the nanomembranes sacrificial supports of coatings have shown great promise. 9

Here we will present a detailed protocol for synthesis of conjugated microporous polymer (CMP)10-13 thin films through sequential addition of the molecular building blocks, with desired thickness and composition. The preparation of free-standing CMP nanomembranes is achieved by using a sacrificial support. To handle and transfer the CMP nanomembranes to other supports we will describe a simple protocol to protect the membranes with sacrificial coatings and their upfloating to the liquid air interface and subsequent transfer using dip-coating.

Protocol

逐次付加を介してCMP薄膜の合成1。 マイカ上に金の自己組織化単分子膜(SAM)機能化。 エタノール中の11-チオアセチルウンデカン酸-プロパルギルアミド14の1 mM溶液(SAM-液)を準備します。溶液が透明になるまで超音波浴を用いて混ぜます。アルミ箔を用いた光からボトルを保護します。 アルゴン下、金雲母のウエーハを得ます。貯蔵容器からの撤退後18時?…

Representative Results

膜は、赤外反射吸収分光法(IRRAS)によって特徴付けられる。16 図4は、金のウエハに転写CMP-膜からIRRA-スペクトルを示します。芳香族骨格の振動からの典型的なバンドは1605センチメートル-1、1515センチメートル-1と1412センチメートル-1です。未反応のアルキン及びアジド基が2,125 -1および1,227 -1で特徴的なバンドによって観察する?…

Discussion

CMP-フィルムの合成用触媒の溶液を新鮮にする必要があります。壊れた触媒( すなわち、酸化された)を、溶液の青色着色によって示されます。新鮮な溶液は無色です。

重要な点は、スピンコートPMMA後マイカ基板の端部を切断することです。また、基板の欠陥をカットする必要があり、 すなわち、各スポットは、PMMAが見つからないため、金層の、マイカ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Acetone VWR BDH Prolabo 20066.330 AnalR NORMAPUR
Potassium iodide VWR BDH Prolabo 26846.292 AnalR NORMAPUR
Ethyl acetate VWR BDH Prolabo 23882.321 AnalR NORMAPUR
Tetrahydrofurane (THF) VWR BDH Prolabo 28559.320 HiPerSolv CHROMANORM
THF waterfree Merck Millipore 1.08107.1001 SeccoSolv
Iodine Sigma-Aldrich 20,777-2
Tetrakis(acetonitrile)copper(I)hexafluoro-phosphate Sigma-Aldrich 346276-5G
Poly(methyl methacrylate) 996 kDa (PMMA) Sigma-Aldrich 182265-25G
1.1.1.1 Methanetetrayltetrakis(4-azidobenzene) (TPM-azide) provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to9
1.1.1.1 Methanetetrayltetrakis(4-ethinylenebenzene) (TPM-alkyne) provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to9
11-thioacetyl-undecaneacid propargylamide provided by AK Prof. Bräse. Institute of organic chemistry, Karlsruhe Institute of Technology. Synthesized according to8
gold/titan coated silicium-wafer Georg Albert PVD, 76857 Silz, Germany
gold coated mica Georg Albert PVD, 76857 Silz, Germany

References

  1. Lindemann, P., et al. Preparation of Freestanding Conjugated Microporous Polymer Nanomembranes for Gas Separation. Chemistry of Materials. 26 (24), 7193-71 (2014).
  2. Kim, M., et al. Preparation of Ultrathin Films of Molecular Networks through Layer-by-Layer Cross-Linking Polymerization of Tetrafunctional Monomers. Macromolecules. 44 (18), 7092-7095 (2011).
  3. Vonhören, B., et al. Ultrafast Layer-by-Layer Assembly of Thin Organic Films Based on Triazolinedione Click Chemistry. ACS Macro Letters. 4 (3), 331-334 (2015).
  4. Shekhah, O., et al. Step-by-Step Route for the Synthesis of Metal−Organic Frameworks. Journal of the American Chemical Society. 129 (49), 15118-15119 (2007).
  5. Shekhah, O., Wang, H., Zacher, D., Fischer, R. A., Wöll, C. Growth Mechanism of Metal–Organic Frameworks: Insights into the Nucleation by Employing a Step-by-Step Route. Angewandte Chemie International Edition. 48 (27), 5038-5041 (2009).
  6. Shekhah, O., Liu, J., Fischer, R. A., Wöll, C. MOF thin films: existing and future applications. Chemical Society Reviews. 40 (2), 1081-1106 (2011).
  7. Liu, J., et al. Deposition of Metal-Organic Frameworks by Liquid-Phase Epitaxy: The Influence of Substrate Functional Group Density on Film Orientation. Materials. 5 (9), 1581-1592 (2012).
  8. Such, G. K., Quinn, J. F., Quinn, A., Tjipto, E., Caruso, F. Assembly of Ultrathin Polymer Multilayer Films by Click Chemistry. Journal of the American Chemical Society. 128 (29), 9318-9319 (2006).
  9. Ai, M., et al. Carbon Nanomembranes (CNMs) Supported by Polymer: Mechanics and Gas Permeation. Advanced Materials. 26 (21), 3421-3426 (2014).
  10. Jiang, J. -. X., Cooper, A. I. in Functional Metal-Organic Frameworks: Gas Storage, Separation and Catalysis. Topics in Current Chemistry. (ed Martin Schröder) Ch. 293, 1-33 (2010).
  11. Dawson, R., Cooper, A. I., Adams, D. J. Nanoporous organic polymer networks. Progress in Polymer Science. 37 (4), 530-563 (2012).
  12. Muller, T., Bräse, S. Click Chemistry Finds Its Way into Covalent Porous Organic Materials. Angewandte Chemie International Edition. 50 (50), 11844-11845 (2011).
  13. Tsotsalas, M., Addicoat, M. A. Covalently linked organic networks. Frontiers in Materials. 2, (2015).
  14. Kleinert, M., Winkler, T., Terfort, A., Lindhorst, T. K. A modular approach for the construction and modification of glyco-SAMs utilizing 1,3-dipolar cycloaddition. Organic & Biomolecular Chemistry. 6 (12), 2118-2132 (2008).
  15. Plietzsch, O., et al. Four-fold click reactions: Generation of tetrahedral methane- and adamantane-based building blocks for higher-order molecular assemblies. Organic & Biomolecular Chemistry. 7, (2009).
  16. Greenler, R. G. Infrared Study of Adsorbed Molecules on Metal Surfaces by Reflection Techniques. The Journal of Chemical Physics. 44 (1), (1966).
check_url/kr/53324?article_type=t

Play Video

Cite This Article
Lindemann, P., Träutlein, Y., Wöll, C., Tsotsalas, M. Layer-by-layer Synthesis and Transfer of Freestanding Conjugated Microporous Polymer Nanomembranes. J. Vis. Exp. (106), e53324, doi:10.3791/53324 (2015).

View Video