Summary

实验方法来研究线粒体定位和核细胞周期激酶CDK1功能

Published: February 25, 2016
doi:

Summary

Here, we outline how to study mitochondrial localization of a (cell cycle) kinase, and how to determine its sub-mitochondrial location as well as potential mitochondrial substrates/targets. Forced expression of proteins into the mitochondria provides a useful tool for studying the functional consequences of mitochondrial localization of a protein of interest.

Abstract

Although mitochondria possess their own transcriptional machinery, merely 1% of mitochondrial proteins are synthesized inside the organelle. The nuclear-encoded proteins are transported into mitochondria guided by their mitochondria targeting sequences (MTS); however, a majority of mitochondrial localized proteins lack an identifiable MTS. Nevertheless, the fact that MTS can instruct proteins to go into the mitochondria provides a valuable tool for studying mitochondrial functions of normally nuclear and/or cytoplasmic proteins. We have recently identified the cell cycle kinase CyclinB1/Cdk1 complex in the mitochondria. To specifically study the mitochondrial functions of this complex, mitochondrial overexpression and knock-down of this complex without interfering with its nuclear or cytoplasmic functions were essential. By tagging CyclinB1/Cdk1 with MTS, we were able to achieve mitochondrial overexpression of this complex to study its mitochondrial targets as well as functions. Via tagging dominant-negative Cdk1 with MTS, inhibition of Cdk1 activity was accomplished particularly in the mitochondria. Potential mitochondrial targets of CyclinB1/Cdk1 complex were identified using a gel-based proteomics approach. Unlike traditional 2D gel analysis, we employed 2-dimensional difference gel electrophoresis (2D-DIGE) technology followed by phosphoprotein staining to fluorescently label differentially phosphorylated proteins in mitochondrial Cdk1 expressing cells. Identification of phosphoprotein spots that were altered in wild type versus dominant negative Cdk1 bearing mitochondria revealed the identity of mitochondrial targets of Cdk1. Finally, to determine the effect of CyclinB1/Cdk1 mitochondrial localization in cell cycle progression, a cell proliferation assay using a synthetic thymidine analogue EdU (5-ethynyl-2′-deoxyuridine) was used to monitor the cells as they go through the cell cycle and replicate their DNA. Altogether, we demonstrated a variety of approaches available to study mitochondrial localization and activity of a cell cycle kinase. These are advanced, yet easy to follow methods that will be beneficial to many cell biology researchers.

Introduction

在哺乳动物中,细胞周期进展取决于由细胞周期蛋白和周期蛋白依赖性激酶(的Cdks)1控制的高度有序的事件。通过其胞质,细胞核,和中心体定位,其CyclinB1 / CDK1能够在有丝分裂的不同的事件,如核膜破裂和中心体分离2同步。其CyclinB1 / CDK1保护有丝分裂细胞抗凋亡3,促进线粒体分裂,线粒体平均分配给新成立的子细胞4的关键一步。

在增殖哺乳动物细胞中,线粒体ATP经由氧化磷酸化(OXPHOS)机械(电子传递链),它是由5多亚基复合物生成;复杂的I – 复杂V(CI-CV)。烟酰胺腺嘌呤二核苷酸(NADH):泛醌氧化还原酶或复合物I(CI)是理解的五个配合物5的最大和最小。在复杂的C的45亚基,其中14 onsists形成催化核心。一旦组装好,复杂的假定的L形结构有一个臂突出到基体和嵌入在内膜6,7-另一个臂。在CI亚基突变是多种线粒体紊乱8的原 ​​因。在OXPHOS一支高效CI不仅需要整体线粒体呼吸9,而且对成功的细胞周期进程10。 Unravelling在健康和疾病这种膜结合酶复合物的功能所依据的机制可以启用新的诊断程序和先进的治疗策略的开发。在最近的研究中,我们已经发现,中CyclinB1 / CDK1复杂易位到在(峡2),G2 /(有丝分裂)M期线粒体和磷酸CI亚基以提高线粒体的能量生产,潜在地抵消细胞中的细胞的增加的能源需求周期11。在这里,我们笑wcase实验程序,并且可以被用来研究否则核/质激酶的线粒体易位策略,其线粒体底物,以及使用其CyclinB1 / CDK1,例如他们的线粒体定位的功能的后果。

这一发现在需要的时候提示特定线粒体表达这种复杂​​的击倒的研究中CyclinB1 / CDK1复杂易位到线粒体。以实现蛋白质的特异性线粒体表达,人们可以在感兴趣的蛋白的N-末端添加一个线粒体靶向序列(MTS)。线粒体靶向序列使线粒体蛋白到他们正常居住12线粒体的排序。我们使用来自人的细胞色素C氧化酶亚基8A(COX8)的前体衍生的87碱基线粒体靶向序列,并克隆到绿色荧光蛋白(GFP)-tagged CyclinB1的或红色荧光蛋白(RFP)-tagged含质粒的帧CDK1。该方法使我们能够针对CyclinB1的和CDK1进入线粒体,具体地改变这些蛋白质的线粒体表达而不影响它们的核池。通过荧光标记这些蛋白质,我们能够监视他们的实时定位。同样,我们推出了MTS到含有RFP标记的显性负CDK1的质粒,使我们能够明确打掉CDK1的线粒体表达和功能。它具有双本地化一样CDK1激酶的线粒体和核函数来区分是必不可少的。工程MTS到这些双功能激酶的N端提供了一个很好的策略,很容易被采用和有效的。

因为CDK1是细胞周期激酶,它是基本的,以确定细胞周期进展时CDK1被本地化为线粒体。为了实现这一目标,我们已利用的新方法具d,来监测细胞中的DNA含量。传统的方法包括使用的BrdU(溴脱氧尿苷),一种合成的胸苷类似物,它在细胞周期的S期合并到新合成的DNA代替胸苷。然后正在积极复制它们的DNA的细胞可以使用抗BrdU抗体进行检测。这种方法的一个缺点是,它需要的DNA变性通过苛刻的方法,如酸或热处理,这可能导致在结果中13,14之间的不一致性,以提供所述的BrdU抗体的访问。另外,我们采用了类似的方法,以监测不同的胸苷类似物,埃杜的积极分裂的细胞。检测的EdU不需要苛刻的DNA变性,中性清洁剂处理使检测试剂来访问这些EDU在新合成的DNA。所述的EdU方法已被证明是更可靠的,一致的,并与高通量分析15的潜力。

最后,T○确定CDK1的线粒体基质中,我们使用了一种名为2D-DIGE蛋白质组学的工具,这是经典的双向电泳的高级版本。二维电泳根据在第二第一维和分子量等电点分离蛋白。由于翻译后修饰,如磷酸化影响的蛋白质的等电点和分子量,2D凝胶可检测不同样品中的蛋白质的磷酸化状态之间的差异。蛋白质的大小(面积和强度)掩护变化与蛋白质的表达水平,允许多个样品间的定量比较。使用这种方法,我们能够区分磷酸化蛋白质在野生型与突变线粒体靶向CDK1表达细胞。特定蛋白质斑点,在野生型显示,但在线粒体靶向突变CDK1制备失踪分离并通过质谱法鉴定。

在传统的2D凝胶,三苯甲烷染料被用来可视化凝胶上的蛋白质。 2D-DIGE使用荧光蛋白标签与蛋白质的电泳迁移率的影响最小。不同的蛋白质样品可以用不同的荧光染料,混合在一起,并通过相同的凝胶上分离,从而允许在单一凝胶16多个样品的共电泳进行标记。这最大限度地减少了凝胶到凝胶变体,它是在基于凝胶的蛋白质组学研究的一个关键问题。

Protocol

1.从培养细胞线粒体的分离 分离缓冲液的制备细胞(IBC)缓冲 制备的0.1M Tris / MOPS(三(羟甲基)氨基甲烷/ 3-(N-吗啉代)丙磺酸):将12.1克的Tris在800毫升的蒸馏水中,使用MOPS粉末调节pH值至7.4,加蒸馏水至总在4℃的1升和存储量制备0.1M的EGTA(乙二醇双(2-氨基乙醚)四乙酸)/的Tris:将38.1克的EGTA在800毫升的蒸馏水中,使用的Tris粉末调节pH值至7.4…

Representative Results

中CyclinB1和CDK1的亚线粒体定位 碳酸钠提取用于确定一种蛋白质是否位于线粒体内或外表面,即外膜上。一旦蛋白被示出为在线粒体内本地化,亚线粒体定位的进一步确定可以通过用蛋白酶消化mitoplasting组合制成。来指定其CyclinB1或CDK1的副线粒体定位,mitoplasts通过稀释在低渗缓冲液线粒体与200毫渗透蔗糖浓度降低?…

Discussion

往其他亚细胞蛋白质一样,线粒体有针对性的蛋白质具有自己的原发性或继发性结构中的定位信号,即引导他们以精心的蛋白质易位和折叠机21,22的帮助下,细胞器。线粒体靶向从独占线粒体驻地蛋白质如COX8获得的序列(MTS)可以被添加到任何基因序列的N末端 ​​至特异性蛋白靶向进入线粒体11,23,24。这里,其CyclinB1和CDK1基因克隆到含有载体COX8 MTS和表达时,重组CyclinB1的和CDK1被…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grants CA133402, CA152313 and Department of Energy Office of Science DE-SC0001271. We thank the University of California Davis Flow Cytometry Shared Resource Laboratory with funding from the NCI P30 CA0933730, and NIH NCRR C06-RR12088, S10 RR12964 and S10 RR 026825 grants and with technical assistance from Ms. Bridget McLaughlin and Mr. Jonathan Van Dyke for their help with the flow cytometry experiments.

Materials

32P ATP  PerkinElmer BLU002001MC 
Anti-mouse secondary antibody Invitrogen  A-11003 Alexa-546 conjugated
Anti-rabbit secondary antibody Invitrogen  A11029 Alexa-488 conjugated
ATP Research Organics 1166A For in vitro kinase assay
Cdk1 antibody Cell Signaling Technology 9112
Cdk1 kinase buffer New England Biolabs P6020S
Click-iT EdU Alexa Fluor 488 Imaging Kit Life Technologies C10337 For cell cycle analysis with EdU labeling
COX IV antibody Cell Signaling Technology 4844S For mitochondrial immunostaining
Cyclin B1 antibody Santa Cruz Biotech sc-752
CyclinB1/Cdk1 enzyme complex New England Biolabs P6020S Avoid freeze/thaw
CyDye DIGE Fluor Labeling Kit GE Healthcare Life Sciences 25-8009-83
DIGE Gel and DIGE Buffer Kit GE Healthcare Life Sciences 28-9480-26 AA
Dimethylformamide  Sigma Aldrich 319937 DMF
Dithiothreitol Bio-Rad 161-0611 DTT
dNTP EMD Millipore 71004 For site-directed mutagenesis
Dpn I enzyme Stratagene 200519-53 For site-directed mutagenesis
Dry Strip cover fluid GE Healthcare Life Sciences 17-1335-01 Used as mineral oil
EDTA J.T. Baker 4040-03
EGTA Acros Organics 409910250
Eppendorf Vacufuge Concentrator Fisher Scientific 07-748-13 Used as vacuum centrifuge concentrator
Fluoromount G Southern Biotech 0100-01 Anti-fade mounting solution
Fortessa Flow Cytometer BD Biosciences 649908 For cell cycle analysis with EdU labeling
Histone H1 Calbiochem 382150 For in vitro kinase assay
QIAquick Gel Extraction Kit Qiagen 28704 For purifying DNA fragments from agarose gels
Immobiline DryStrip Gels GE Healthcare Life Sciences 18-1016-61 IEF (isoelectric focusing) strips
Immobilized Glutathione Thermo Scientific 15160 Glutathione-agarose beads
Iodoacetamide Sigma Aldrich I1149 IAA
IPGphor 3 Isoelectric Focusing Unit GE Healthcare Life Sciences 11-0033-64 IPGphor strip holders
Isopropyl-b-D-thio-galactopyranoside  RPI Corp 156000-5.0 IPTG
Leupeptin Sigma Aldrich L9783 For cell lysis buffer
Lipofectamine 2000 Life Technologies 11668027 Transfection reagent
Lysine Sigma Aldrich L5501 For CyDye labeling
Lysozyme EMD Chemicals 5960
Mitoctracker Red/Green Invitrogen  M7512/M7514 Mitochondrial fluorescent dyes
MOPS EMD Chemicals 6310
pEGFP-N1 Clonetech 6085-1 GFP-expressing vector
Pfu Stratagene 600-255-52
pGEX-5X-1  GE Healthcare Life Sciences 28-9545-53 GST-expressing vector
Phenylmethylsulfonyl fluoride Shelton Scientific IB01090 PMSF
Phosphate buffered saline Life Technologies 14040 PBS
Spectra/Por 4 dialysis tubing Spectrum Labs 132700 as porous membrane tubing for dialysis
Pro-Q Diamond Phosphoprotein Gel Stain Life Technologies P-33300 For staining phosphoproteins on 2D gels
Proteinase inhibitor cocktail Calbiochem 539134 For cell lysis buffer
QuikChange site-directed mutagenesis kit Stratagene 200519-5
QIAprep Spin Miniprep Kit Qiagen 27104 MiniPrep Plasmid Isolation Kit
RO-3306 Alexis Biochemicals 270-463-M001 Cdk1 inhibitor
Rotenone MP Biomedicals 150154 Complex I inhibitor
Sodium carbonate Fisher Scientific S93359
Sodium chloride EMD Chemicals SX0420-5 For cell lysis buffer
Sodium orthovanadate MP Biomedicals 159664 For cell lysis buffer
Sodium pyrophosphate decahydrate Alfa Aesar 33385 For cell lysis buffer
Sodium β-glycerophosphate Alfa Aesar L03425 For cell lysis buffer
SpectraMax M2e  Molecular Devices M2E Microplate reader
Sucrose Fisher Scientific 57-50-1
Tissue Grinder pestle Kimble Chase 885301-0007 For mitochondria isolation
Tissue Grinder tube Kimble Chase 885303-0007 For mitochondria isolation
Trichloroacetic acid solution Sigma Aldrich T0699 TCA
Tris MP Biomedicals 103133
Triton-x-100 Teknova T1105
Trypsin Calbiochem 650211
Typhoon Imager GE Healthcare Life Sciences 28-9558-09 Laser gel scanner fro 2D-DIGE
Ubiquinone Sigma Aldrich C7956

References

  1. Weinert, T., Hartwell, L. Control of G2 delay by the rad9 gene of Saccharomyces cerevisiae. J Cell Sci Suppl. 12, 145-148 (1989).
  2. Takizawa, C. G., Morgan, D. O. Control of mitosis by changes in the subcellular location of cyclin-B1-Cdk1 and Cdc25C. Curr Opin Cell Biol. 12 (6), 658-665 (2000).
  3. Allan, L. A., Clarke, P. R. Phosphorylation of caspase-9 by CDK1/cyclin B1 protects mitotic cells against apoptosis. Mol Cell. 26 (2), 301-310 (2007).
  4. Cerveny, K. L., Tamura, Y., Zhang, Z., Jensen, R. E., Sesaki, H. Regulation of mitochondrial fusion and division. Trends Cell Biol. 17 (11), 563-569 (2007).
  5. Brandt, U. Energy converting NADH:quinone oxidoreductase (complex I). Annu Rev Biochem. 75, 69-92 (2006).
  6. Hofhaus, G., Weiss, H., Leonard, K. Electron microscopic analysis of the peripheral and membrane parts of mitochondrial NADH dehydrogenase (complex I). J Mol Biol. 221 (3), 1027-1043 (1991).
  7. Weiss, H., Friedrich, T., Hofhaus, G., Preis, D. The respiratory-chain NADH dehydrogenase (complex I) of mitochondria. Eur J Biochem. 197 (3), 563-576 (1991).
  8. Janssen, R. J., Nijtmans, L. G., van den Heuvel, L. P., Smeitink, J. A. Mitochondrial complex I: structure, function and pathology. J Inherit Metab Dis. 29 (4), 499-515 (2006).
  9. Roessler, M. M., et al. Direct assignment of EPR spectra to structurally defined iron-sulfur clusters in complex I by double electron-electron resonance. Proc Natl Acad Sci U S A. 107 (5), 1930-1935 (2010).
  10. Owusu-Ansah, E., Yavari, A., Mandal, S., Banerjee, U. Distinct mitochondrial retrograde signals control the G1-S cell cycle checkpoint. Nat Genet. 40 (3), 356-361 (2008).
  11. Wang, Z., et al. Cyclin B1/Cdk1 coordinates mitochondrial respiration for cell-cycle G2/M progression. Dev Cell. 29 (2), 217-232 (2014).
  12. Omura, T. Mitochondria-targeting sequence, a multi-role sorting sequence recognized at all steps of protein import into mitochondria. J Biochem. 123 (6), 1010-1016 (1998).
  13. Konishi, T., Takeyasu, A., Natsume, T., Furusawa, Y., Hieda, K. Visualization of heavy ion tracks by labeling 3′-OH termini of induced DNA strand breaks. J Radiat Res. 52 (4), 433-440 (2011).
  14. Leif, R. C., Stein, J. H., Zucker, R. M. A short history of the initial application of anti-5-BrdU to the detection and measurement of S phase. Cytometry A. 58 (1), 45-52 (2004).
  15. Li, K., Lee, L. A., Lu, X., Wang, Q. Fluorogenic ‘click’ reaction for labeling and detection of DNA in proliferating cells. Biotechniques. 49 (1), 525-527 (2010).
  16. Kondo, T., et al. Application of sensitive fluorescent dyes in linkage of laser microdissection and two-dimensional gel electrophoresis as a cancer proteomic study tool. Proteomics. 3 (9), 1758-1766 (2003).
  17. Gundry, R. L., et al. Chapter 10, Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Curr Protoc Mol Biol. , Unit 10.25 (2009).
  18. Davies, D., Macey, M. G. Chapter 11, Cell Sorting by Flow Cytometry. Flow Cytometry. , 257-276 (2007).
  19. van den Heuvel, S., Harlow, E. Distinct roles for cyclin-dependent kinases in cell cycle control. Science. 262 (5142), 2050-2054 (1993).
  20. Terry, N. H. A., White, R. A. Flow cytometry after bromodeoxyuridine labeling to measure S and G2+M phase durations plus doubling times in vitro and in vivo. Nat. Protcols. 1 (2), 859-869 (2006).
  21. Becker, L., et al. Preprotein translocase of the outer mitochondrial membrane: reconstituted Tom40 forms a characteristic TOM pore. J Mol Biol. 353 (5), 1011-1020 (2005).
  22. Karniely, S., Pines, O. Single translation–dual destination: mechanisms of dual protein targeting in eukaryotes. EMBO Rep. 6 (5), 420-425 (2005).
  23. Candas, D., et al. CyclinB1/Cdk1 phosphorylates mitochondrial antioxidant MnSOD in cell adaptive response to radiation stress. J Mol Cell Biol. 5 (3), 166-175 (2013).
  24. Nantajit, D., et al. Cyclin B1/Cdk1 phosphorylation of mitochondrial p53 induces anti-apoptotic response. PLoS One. 5 (8), e12341 (2010).
  25. Cappella, P., Gasparri, F., Pulici, M., Moll, J. A novel method based on click chemistry, which overcomes limitations of cell cycle analysis by classical determination of BrdU incorporation, allowing multiplex antibody staining. Cytometry A. 73 (7), 626-636 (2008).
  26. Niwa, H., et al. Chemical nature of the light emitter of the Aequorea green fluorescent protein. Proc Natl Acad Sci U S A. 93 (24), 13617-13622 (1996).
  27. Tsien, R. Y. The green fluorescent protein. Annu Rev Biochem. 67, 509-544 (1998).
  28. Marouga, R., David, S., Hawkins, E. The development of the DIGE system: 2D fluorescence difference gel analysis technology. Anal Bioanal Chem. 382 (3), 669-678 (2005).
  29. Timms, J. F., Cramer, R. Difference gel electrophoresis. Proteomics. 8 (23-24), 4886-4897 (2008).
  30. Crane, J., Mittar, D., Soni, D., McIntyre, C. Cell Cycle Analysis Using the BD BrdU FITC Assay on the BD FACSVerse System. BD Biosciences Appl Notes. , (2011).
check_url/kr/53417?article_type=t

Play Video

Cite This Article
Candas, D., Qin, L., Fan, M., Li, J. Experimental Approaches to Study Mitochondrial Localization and Function of a Nuclear Cell Cycle Kinase, Cdk1. J. Vis. Exp. (108), e53417, doi:10.3791/53417 (2016).

View Video