Summary

Utveckling av ett kolloidalt guld-baserade immunokromatografisk testremsa för detektion av Cetacean myoglobin

Published: July 13, 2016
doi:

Summary

This protocol describes the development of two IgG class monoclonal antibodies (mAbs) strongly reactive to myoglobin of cetaceans. These mAbs are applied on a colloidal gold immunochromatographic test strip based on the sandwich format to differentiate the Mb of cetaceans from seal and other animals.

Abstract

This protocol describes the development of a colloidal gold immunochromatographic test strip based on the sandwich format that can be used to differentiate the myoglobin (Mb) of cetaceans from that of seals and other animals. The strip provides rapid and on-the-spot screening for cetacean meat, thereby restraining its illegal trade and consumption. Two monoclonal antibodies (mAbs) with reactivity toward the Mb of cetaceans were developed. The amino acid sequences of Mb antigenic reactive regions from various animals were analyzed in order to design two synthetic peptides (a general peptide and a specific peptide) and thereafter raise the mAbs (subclass IgG1). The mAbs were selected from hybridomas screened by indirect ELISA, western blot and dot blot. CGF5H9 was specific to the Mbs of rabbits, dogs, pigs, cows, goats, and cetaceans while it showed weak to no affinity to the Mbs of chickens, tuna and seals. CSF1H13 can bind seals and cetaceans with strong affinity but showed no affinity to other animals. Cetacean samples from four families (Balaenopteridae, Delphinidae, Phocoenidae and Kogiidae) were used in this study, and the results indicated that these two mAbs have broad binding ability to Mbs from different cetaceans. These mAbs were applied on a sandwich-type colloidal gold immunochromatographic test strip. CGF5H9, which recognizes many species, was colloid gold-labeled and used as the detection antibody. CSF1H13, which was coated on the test zone, detected the presence of cetacean and seal Mbs. Muscle samples from tuna, chicken, seal, five species of terrestrial mammals and 15 species of cetaceans were tested in triplicate. All cetacean samples showed positive results and all the other samples showed negative results.

Introduction

Historically, cetacean meat has been consumed in many parts of the world and this consumption continues today1. Due to the trophic level of cetaceans, high levels of mercury and other toxins are known to be present in their meat2. Therefore, the consumption of cetacean meat could lead to a health problem not only for high-risk groups such as pregnant women but also for the general population3. Furthermore, the contamination of cetacean meat with zoonotic or potentially zoonotic pathogens can also occur during its processing and storage4. It is difficult even for experienced agents to identify cetacean meats by their appearance alone. Therefore, a reliable scientific method of identification is required to differentiate cetacean meat from other meats. This would help to limit the consumption of cetacean meat.

Current methods of species identification include molecular techniques and immunological methods. Molecular techniques, such as polymerase chain reaction (PCR) and DNA sequencing, can be used to identify samples not only from raw meat5 and decomposed samples6 but also from processed foods such as cooked sausage and feedstuffs7,8. Immunological methods, such as enzyme-linked immunosorbent assay (ELISA), are commonly applied in food production to detect the meat content of, for example, pork9, beef10 and catfish11. PCR-based DNA analysis for the identification of cetacean meat is available12, and has helped prevent the illegal international trade of cetacean meat in Japan, South Korea, the Philippines, Taiwan, Hong Kong, Russia, Norway, and the United States1. These methods are effective and reliable, but they can take hours or days to complete and involve laborious steps. The identification of cetacean meats is usually based on molecular techniques and there is currently no immunological method available. For regulatory agencies, it is highly desirable to develop a dependable and rapid technique that can be used in the field to identify cetacean meats.

Immunochromatographic strips are used as detection tools with the advantage of producing rapid result via a simple protocol that is suitable for use in the field. The principles of the immunochromatographic strip and ELISA are very similar, and includes antibodies, antigens and labels. Many different labels such as colloidal gold, carbon and latex have been used in the development of immunochromatographic strips. At present, this method is commonly used for detecting antibiotics, toxin, bacteria and viruses13, but it is rarely used for identifying proteins in meat14,15. Here we propose a lateral-flow chromatographic enzyme immunoassay for rapid detection of cetacean myoglobin (Mb).

Protocol

Etik uttalande: Studien genomfördes i enlighet med internationella riktlinjer och godkänts av Institutional Animal Care och användning kommittén (IACUC) av National Chiayi universitet, godkännande ID: 99022. Det valar prov bruk tilläts av rådet för jordbruk i Taiwan (Research Tillstånd 100M-02.1-C-99). 1. Muskelprovberedning och SDS-PAGE Obs: Muskelprover från 23 arter, inklusive 16 arter av marina däggdjur, 5 arter av landlevande däggd…

Representative Results

Monoklonala egenskaper antikropps Vi utvecklade två IgG 1 mAbs (CGF5H9 och CSF1H13) som känner igen två syntetiska peptider (MKASEDLKKHGNTVLC och AIIHVLHSRHPAEFGC), respektive, av valar Mb, och dessa användes för att konstruera en sandwich-typ kolloidalt guld immunokromatografisk testremsa för snabb detektion av valar Mb. Figur 2 visar att CGF5H9 detekterar valar och andra däggdjur som en enda färgade band vid en förutsagd molekylvikt på…

Discussion

Med användning av en syntetisk peptid konjugerad till bärarprotein är anmärkningsvärt effektivare jämfört med dess besläktade protein. För en sandwich-baserad teknik, eftersom mAb utvecklas med hjälp av epitoper med kända relativa lägen, de två mAb i denna studie är inte troligt att störa varandra interaktion med målet antigenepitop. Dessutom kan reaktiviteten mellan det nativa proteinet och antikroppen av möss som immuniserats med den syntetiska peptiden-konjugat vara starkare än reaktiviteten mellan …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We appreciate the colleagues in Taiwan Cetacean Society, Marine Biology and Cetacean Research Center of National Cheng Kung Univerisy, Farglory Ocean Park, and Animal Disease Diagnostic Center of National Chiayi Universiy for sample collection. This project was funded by grant to WCY from the Council of Agriculture of Taiwan (100AS-02.1-FB99).

Materials

Phosphate buffered saline AMRESCO J373
Protein G HP SpinTrap  GE Healthcare 28-9031-34 spin column containing Protein G Sepharose
IsoStrip Mouse Monoclonal Antibody Isotyping Kit Roche 11493027001 Isotyping Strips, precoated with subclass- and light-chain-specific anti-mouse-Ig antibodies
Mini Trans-Blot Bio-Rad 170-3935
Nitrocellulose membrane Whatman Z613630
Antibody blocker solution  LTK BioLaboratories To minimize nonspecific binding interactions of nonspecific IgG in the samples
BCIP/NBT phosphatase substrate  KPL 50-81-00
Protein Detector HRP Microwell Kit, Anti-Mouse KPL 54-62-18
Nunc Immunoplate MaxiSorp ELISA plate Thermo Fisher Scientific EW-01928-08
Multiskan EX ELISA reader  Thermo Electron Corporation 51118170
Colloid gold (40 nm) solution  REGA biotechnology Inc. 40-50 nm is appropriate for immunostrip
Bovine serum albumin Gibco 15561-020
Rapid test immno-strip printer REGA biotechnology Inc. AGISMART RP-1000  Only suited for small scale production of immunostrips for research and development purposes
Strip components (NC membranes, sample pads (#33 glass, S&S), conjugate pads (#16S, S&S) and absorbent pads (CF6, Whatman)) REGA biotechnology Inc.
Freund’s adjuvant and incomplete Freund’s adjuvant  Sigma-Aldrich F5881, F5506 Used to produce water-in-oil emulsions of immunogens
Acrylamide, gel buffer, ammonium persulfate (APS), tetramethylethylenediamine (TEMED)  Protech Gel preparation for SDS-PAGE
Coomassie brilliant blue R-250 Bio-Rad 1610436 Protein staining in SDS-PAGE gels
Laemmli sample buffer and β-mercaptoethanol Bio-Rad 1610737, 1610710 Dilute protein samples before loading on SDS-PAGE gels

References

  1. Robards, M. D., Reeves, R. R. The global extent and character of marine mammal consumption by humans: 1970-2009. Biol. Conserv. 144, 2770-2786 (2011).
  2. Booth, S., Zeller, D. Mercury, food webs, and marine mammals: implications of diet and climate change for human health. Environ. Health Perspect. 113, 521-526 (2005).
  3. Endo, T., et al. Total mercury, methyl mercury, and selenium levels in the red meat of small cetaceans sold for human consumption in Japan. Environ. Sci. Technol. 39, 5703-5708 (2005).
  4. Tryland, M., et al. Human pathogens in marine mammal meat. Norwegian Scientific Committee for Food Safety (VKM). , (2011).
  5. Matsunaga, T., et al. A quick and simple method for the identification of meat species and meat products by PCR assay. Meat Sci. 51, 143-148 (1999).
  6. Dalebout, M. L., Helden, A. V., van Waerebeek, K., Baker, C. S. Molecular genetic identification of southern hemisphere beaked whales (Cetacea: Ziphiidae). Mol. Ecol. 7, 687-694 (1998).
  7. Dalmasso, A., et al. A multiplex PCR assay for the identification of animal species in feedstuffs. Mol. Cell. Probes. 18, 81-87 (2004).
  8. Kesmen, Z., Sahin, F., Yetim, H. PCR assay for the identification of animal species in cooked sausages. Meat Sci. 77, 649-653 (2007).
  9. Liu, L., Chen, F. -. C., Dorsey, J. L., Hsieh, Y. -. H. P. Sensitive Monoclonal Antibody-based Sandwich ELISA for the Detection of Porcine Skeletal Muscle in Meat and Feed Products. J. Food Sci. 71, 1-6 (2006).
  10. Kotoura, S., et al. A Sandwich ELISA for the Determination of Beef Meat Content in Processed Foods. Food Sci. Techno. Res. 15, 613-618 (2009).
  11. Hsieh, Y. H., Chen, Y. T., Gajewski, K. Monoclonal antibody-based sandwich ELISA for reliable identification of imported Pangasius catfish. J. Food Sci. 74, 602-607 (2009).
  12. Ross, H. A., et al. DNA surveillance: web-based molecular identification of whales, dolphins, and porpoises. J.Hered. 94, 111-114 (2003).
  13. Ngom, B., Guo, Y., Wang, X., Bi, D. Development and application of lateral flow test strip technology for detection of infectious agents and chemical contaminants: a review. Anal. Bioanal. Chem. 397, 1113-1135 (2010).
  14. Muldoon, M. T., Onisk, D. V., Brown, M. C., Stave, J. W. Targets and methods for the detection of processed animal proteins in animal feedstuffs. Int. J. Food Sci. Technol. 39, 851-861 (2004).
  15. Rao, Q., Hsieh, Y. H. Evaluation of a commercial lateral flow feed test for rapid detection of beef and sheep content in raw and cooked meats. Meat Sci. 76, 489-494 (2007).
  16. Tamura, K., et al. MEGA5: molecular evolutionary genetics analysis using maximum likelihood, evolutionary distance, and maximum parsimony methods. Mol. Biol. Evol. 28, 2731-2739 (2011).
  17. Atassi, M. Z. Antigenic structure of myoglobin: the complete immunochemical anatomy of a protein and conclusions relating to antigenic structures of proteins. Immunochemistry. 12, 423-438 (1975).
  18. Zhang, C. Hybridoma technology for the generation of monoclonal antibodies. Methods Mol. Biol. 901, 117-135 (2012).
  19. Kao, D. J., Hodges, R. S. Advantages of a synthetic peptide immunogen over a protein immunogen in the development of an anti-pilus vaccine for Pseudomonas aeruginosa. Chem. Biol. Drug Des. 74, 33-42 (2009).
  20. Dolar, M. L., Suarez, P., Ponganis, P. J., Kooyman, G. L. Myoglobin in pelagic small cetaceans. J. Exp. Biol. 202, 227-236 (1999).
  21. Lo, C., et al. Rapid immune colloidal gold strip for cetacean meat restraining illegal trade and consumption: implications for conservation and public health. PLoS ONE. 8, e60704 (2013).
check_url/kr/53433?article_type=t

Play Video

Cite This Article
Chan, K., Lo, C., Chu, C., Chin, L., Wang, Y., Yang, W. Development of a Colloidal Gold-based Immunochromatographic Test Strip for Detection of Cetacean Myoglobin. J. Vis. Exp. (113), e53433, doi:10.3791/53433 (2016).

View Video