Summary

具有可变角度荧光显微镜植物细胞表面动力学的实时成像

Published: December 12, 2015
doi:

Summary

该协议的目的是演示如何监测荧光标记蛋白动力学上的植物细胞表面与可变角荧光显微镜,表示闪烁GFP标记PATROL1,一个膜运输蛋白质的点,在所述气孔络合物在细胞皮质拟南芥。

Abstract

A plant’s cell surface is its interface for perceiving environmental cues; it responds with cell biological changes such as membrane trafficking and cytoskeletal rearrangement. Real-time and high-resolution image analysis of such intracellular events will increase the understanding of plant cell biology at the molecular level. Variable angle epifluorescence microscopy (VAEM) is an emerging technique that provides high-quality, time-lapse images of fluorescently-labeled proteins on the plant cell surface. In this article, practical procedures are described for VAEM specimen preparation, adjustment of the VAEM optical system, movie capturing and image analysis. As an example of VAEM observation, representative results are presented on the dynamics of PATROL1. This is a protein essential for stomatal movement, thought to be involved in proton pump delivery to plasma membranes in the stomatal complex of Arabidopsis thaliana. VAEM real-time observation of guard cells and subsidiary cells in A. thaliana cotyledons showed that fluorescently-tagged PATROL1 appeared as dot-like structures on plasma membranes for several seconds and then disappeared. Kymograph analysis of VAEM movie data determined the time distribution of the presence (termed ‘residence time’) of the dot-like structures. The use of VAEM is discussed in the context of this example.

Introduction

The plant cell surface, including the plasma membrane and its immediately adjacent cytoplasm, is the main region of a plant cell’s perception and integration of biotic and abiotic cues from the extracellular environment. In response to these cues, cell surface components including plasma membrane proteins and the cortical cytoskeleton undergo dynamic changes, on a time scale of seconds to minutes1-4. Thus, real-time and high-resolution imaging of fluorescent proteins on the cell surface can illuminate a plant’s responses to environmental cues at the molecular level.

Confocal laser scanning microscopy is a powerful tool for determination of fluorescently-tagged protein localization3, however, it is often difficult to monitor the real-time protein dynamics because of its relatively long capturing times. An emerging technique for real-time monitoring of proteins in the plant cell is variable angle epifluorescence microscopy (VAEM), which is an adaptation of equipment usually used for total internal reflection fluorescence (TIRF) microscopy. In TIRF microscopy, the fluorescence-excitation light source is an evanescent light field that is generated when the entry angle of the laser is shallow enough to totally internally reflect light at the glass–water interface. The penetration depth of the evanescent light field is around 100 nm. TIRF microscopy is an outstanding tool for single molecule imaging, such as the detection of exocytosis in animal cells5. However, evanescent light cannot reach plasma membranes or the cortical cytoplasm in plant cells, because they have thick cell walls. Recently, TIRF microscopy equipment has been adapted by plant cell biologists, observing that a laser, if angled slightly more deeply than when being used to induce total internal reflection phenomena, could excite the surface of plant cell samples, resulting in high-quality plant cell imaging6,7. The excitation illumination depth is varied by adjusting the entry angle of the laser; therefore, this technique is described as VAEM. This optical system is also called variable angle TIRF microscopy (VA-TIRFM) because there is a possibility that total reflection may take place at the cell wall-periplasm interface7, however, the term VAEM is used in this article, as per the first report in plants6.

The goal of this protocol is to demonstrate practical procedures for using VAEM to visualize fluorescently-tagged protein dynamics on plant cell surfaces. Additionally, an image analysis protocol to quantify the residence time (duration of presence) of molecules is described for VAEM movie analysis. GFP-PATROL1 dot blinking on stomatal complex cells in Arabidopsis thaliana cotyledons is used as an example. PATROL1 was identified by forward genetic approaches as a causal gene of a stomatal response defect mutant in A. thaliana8. PATROL1 is a plant homolog of MUNC-13, which is a priming factor in synapse vesicle exocytosis8. In response to environmental cues, such as light or humidity, it is thought that PATROL1 reversibly regulates the delivery of a proton pump to plasma membranes in the stomatal complex. Stomatal complexes each comprise a pair of guard cells8 and subsidiary cells9, and they require a proton pump for stomatal movement. In these cells, GFP-tagged PATROL1 localizes to dot-like structures that remain on the plasma membrane for less than 1 min9.

Protocol

1.准备幼苗消毒的种子。 和1μl10%的Triton X-100,以500微升无菌水:通过添加500微升的NaClO(5.0%有效氯)制备灭菌溶液。 广场约 10株转基因A.拟南芥种子携带的GFP-PATROL1 8成 1.5毫升管中。 加入1毫升70%的乙醇溶液,并通过反转五次拌匀。离开1分钟。 观察种子沉到试管底部。在洁净层流柜,轻轻取出使用微量的70%的乙醇,并加入1毫升消毒液…

Representative Results

在这个视频文章,为VAEM A中观察GFP-PATROL1的协议提供了拟南芥子叶气孔复杂的细胞。天空降安装是一个简单的制备方法,可以帮助减少在 A中的VAEM制剂气泡的发生拟南芥子叶( 图1)。 Overtilting条目激光和/或标本VAEM z定位将提供的图像不清晰。如果出现这种情况,则建议立即从样品上方的位置重新开始,作为判断通过荧光照明。后的VAEM观察几天的经验,应?…

Discussion

在这个视频文章,方案给出了监测和测量GFP-PATROL1点对拟南芥的气孔复杂的动态行为。如图所示,VAEM观察是一个强大的工具,用于植物细胞表面的实时成像。下这里使用的GFP-PATROL1监测实验条件下,有用于视频捕捉1分钟的样品中很少荧光光漂白,因为高度敏感的EM-CCD的允许使用在VAEM光学相对弱激发激光的。激光定心和聚焦,每次实验开始前,对于成功VAEM观察重要。用户应该由专业的工作?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

I am grateful to Dr. Masaru Fujimoto for his technical suggestions for VAEM. I am also grateful to Prof. Koh Iba and Dr. Mimi Hashimoto-Sugimoto for providing GFP-PATROL1 transgenic plants, and discussions about PATROL1. I thank Prof. Seiichiro Hasezawa for his continuing support of my work. This work was supported by the Japan Society for the Promotion of Science (JSPS) KAKENHI grant number 25711017.

Materials

Inverted microscope Olympus IX-73
TIRF unit Olympus IX3-RFAEVAW
TIRF objective lens  Olympus UAPON 100 × OTIRF  NA = 1.49
Laser angle control box Chuo Seiki QT-AK
Optically pumped semiconductor laser Coherent SapphireTM LP USB 488-20 CDRH Laser
510–550 nm band-pass filter Olympus U-FBNA
EM CCD camera Hamamatsu Photonics ImagEM C9100-13
C-mount camera magnification change unit  Olympus U-TVCAC
MetaMorph software Molecular Devices MetaMorph version 7.7.11.0
TIRF microscopy manual Olympus AX7385 Instructions: Total Internal Reflection Illumination System (Printed in Japan on August 24, 2012)
Immersion oil Olympus Immersion Oil Typr-F ne = 1.518 (23 degrees)

References

  1. Konopka, C. A., Bednarek, S. Y. Comparison of the dynamics and functional redundancy of the Arabidopsis dynamin-related isoforms DRP1A and DRP1C during plant development. Plant Physiol. 147 (4), 1590-1602 (2008).
  2. Fujimoto, M., et al. Arabidopsis dynamin-related proteins DRP2B and DRP1A participate together in clathrin-coated vesicle formation during endocytosis. Proc. Natl. Acad. Sci. USA. 107 (13), 6094-6099 (2010).
  3. Higaki, T., Sano, T., Hasezawa, S. Actin microfilament dynamics and actin side-binding proteins in plants. Curr. Opin. Plant Biol. 10 (6), 549-556 (2007).
  4. Rosero, A., Žársky, V., Cvrčková, F. AtFH1 formin mutation affects actin filament and microtubule dynamics in Arabidopsis thaliana. J. Exp. Bot. 64 (2), 585-597 (2013).
  5. Axelrod, D. Total internal reflection fluorescence microscopy in cell biology. Traffic. 2 (11), 764-774 (2001).
  6. Konopka, C. A., Bednarek, S. Y. Variable-angle epifluorescence microscopy: a new way to look at protein dynamics in the plant cell cortex. Plant J. 53 (1), 186-196 (2008).
  7. Wan, Y., Ash, W. M., Fan, L., Hao, H., Kim, M. K., Lin, J. Variable-angle total internal reflection fluorescence microscopy of intact cells of Arabidopsis thaliana. Plant Methods. 7 (27), (2011).
  8. Hashimoto-Sugimoto, M., et al. A Munc13-like protein in Arabidopsis mediates H+-ATPase translocation that is essential for stomatal responses. Nat. Commun. 4, 2215 (2013).
  9. Higaki, T., Hashimoto-Sugimoto, M., Akita, K., Iba, K., Hasezawa, S. Dynamics and environmental responses of PATROL1 in Arabidopsis subsidiary cells. Plant Cell Physiol. 55 (4), (2014).
  10. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat. Methods. 9 (7), 676-682 (2012).
  11. Chebli, Y., Kaneda, M., Zerzour, R., Geitmann, A. The cell wall of the Arabidopsis pollen tube-spatial distribution, recycling, and network formation of polysaccharides. Plant Physiol. 160 (4), 1940-1955 (2012).
  12. Fujimoto, M., Suda, Y., Vernhettes, S., Nakano, A., Ueda, T. Phosphatidylinositol 3-kinase and 4-kinase have distinct roles in intracellular trafficking of cellulose synthase complexes in Arabidopsis thaliana. Plant Cell Physiol. 56 (2), 287-298 (2015).
  13. Li, X., Wang, X., Yang, Y., Li, R., He, Q., Fang, X., Luu, D. T., Maurel, C., Lin, J. Single-molecule analysis of PIP2; 1 dynamics and partitioning reveals multiple modes of Arabidopsis plasma membrane aquaporin regulation. Plant Cell. 23 (10), 3780-3797 (2011).
  14. Li, R., Liu, P., Wan, Y., Chen, T., Wang, Q., Mettbach, U., Baluska, F., Samaj, J., Fang, X., Lucas, W. J., Lin, J. A membrane microdomain-associated protein, Arabidopsis Flot1, is involved in a clathrin-independent endocytic pathway and is required for seedling development. Plant Cell. 24 (5), 2105-2122 (2012).
  15. Staiger, C. J., Sheahan, M. B., Khurana, P., Wang, X., McCurdy, D. W., Blanchoin, L. Actin filament dynamics are dominated by rapid growth and severing activity in the Arabidopsis cortical array. J. Cell Biol. 184 (2), 269-280 (2009).
  16. Ueda, H., et al. Myosin-dependent endoplasmic reticulum motility and F-actin organization in plant cells. Proc. Natl. Acad. Sci. USA. 107 (15), 6894-6899 (2010).

Play Video

Cite This Article
Higaki, T. Real-time Imaging of Plant Cell Surface Dynamics with Variable-angle Epifluorescence Microscopy. J. Vis. Exp. (106), e53437, doi:10.3791/53437 (2015).

View Video