Summary

原位后肢移植中的鼠标

Published: February 12, 2016
doi:

Summary

这种新颖的模型在小鼠原位后肢移植,申请超微血管吻合的非缝合袖套法,提供了相关的血管化复合同种异体移植(VCA) 体内机械免疫学研究的有力工具。

Abstract

In vivo animal model systems, and in particular mouse models, have evolved into powerful and versatile scientific tools indispensable to basic and translational research in the field of transplantation medicine. A vast array of reagents is available exclusively in this setting, including mono- and polyclonal antibodies for both diagnostic and interventional applications. In addition, a vast number of genotyped, inbred, transgenic, and knock out strains allow detailed investigation of the individual contributions of humoral and cellular components to the complex interplay of an immune response and make the mouse the gold standard for immunological research.

Vascularized Composite Allotransplantation (VCA) delineates a novel field of transplantation using allografts to replace “like with like” in patients suffering traumatic or congenital tissue loss. This surgical methodological protocol shows the use of a non-suture cuff technique for super-microvascular anastomosis in an orthotopic mouse hind limb transplantation model. The model specifically allows for comparison between established paradigms in solid organ transplantation with a novel form of transplants consisting of various different tissue components. Uniquely, this model allows for the transplantation of a viable vascularized bone marrow compartment and niche that have the potential to exert a beneficial effect on the balance of immune acceptance and rejection. This technique provides a tool to investigate alloantigen recognition and allograft rejection and acceptance, as well as enables the pursuit of functional nerve regeneration studies to further advance this novel field of transplantation.

Introduction

The late nineties heralded the pioneering days of reconstructive transplantation with the first successful hand transplant performed in France in 1998. Since then, the use of VCAs for reconstruction of devastating tissue defects has been successfully employed in a wide spectrum of patients. To date, the world counts 76 recipients of 112 upper extremities as well as 31 faces 1-3. In addition, several other types of VCAs such as abdominal wall 4, larynx 5, trachea 6, vascularized joints 7, and even penis 8 have been performed. Furthermore, the live birth of a baby was recently reported after uterus transplantation 9. This growing world experience is indicative for how reconstructive transplantation has become a valid therapeutic option for patients suffering of significant functional tissue defects not amendable to conventional reconstructive and restorative surgery and treatment.

While the idea of replacing “like with like” sparked clinical enthusiasm, initial skepticism still prevails with regards to side effects of conventional high-dose immunosuppression required to maintain allografts and their function 10,11. However, as shown by seminal work of Lee et al., these composite grafts are less likely to reject than its individual components, and furthermore, some of the tissue components such as the vascularized bone compartment have fueled optimism as they might exert unique immunological effects onto the balance of immune acceptance and rejection 12.

Our group pioneered several microsurgical animal models for solid organ transplantation, as well as vascularized composite allotransplantation 13-19. Here we describe a novel surgical procedure using a non-suture cuff technique to perform super micro-vascular anastomosis in an orthotopic mouse hind limb transplantation model. This transplant model provides a useful tool for investigating immune acceptance and rejection mechanisms, as well as the role of individual tissue components, such as the vascularized bone marrow compartment, towards tolerance induction in the immunologically versatile setting of the mouse species. Additionally, the orthotopic placement of the limb opens the possibilities for nerve regeneration and functional outcome studies, which are critically important to the setting of VCA.

Protocol

所有实验均按照指南的护理与健康研究所(NIH)的实验室动物的用途进行,由约翰霍普金斯大学动物护理和使用委员会(JHUACUC)获得批准。经批准的ACUC协议MO13M108下进行的具体程序。 1.供体手术对于在手术前各药理配方合适的时间点管理镇痛。按照批准的动物护理和使用协议使用0.1毫克皮下注射丁丙诺啡/公斤体重1小时前皮肤切口。 通过连接到4%的异氟醚蒸发室采用沉稳的?…

Representative Results

使用非缝合袖套法在小鼠模型中进行血管复合同种异体移植允许以获得优良的和长期的移植物和动物存活,如图1。此外,它表示在血管复合获得逐渐同种异体移植物排斥的可再现的结果的可靠方法同种异体移植如由图2所示的图像记录。从动物进行排斥进一步强调同种异体移植物排斥在这个小鼠模型中的可再现动力学(图…

Discussion

血管化复合异体移植,如上肢和面部移植毁灭性的组织缺损,已演变为对患者没有可修正传统的重建手术有效的治疗选择。在重建显微外科学领域的技术进步,以及与强效免疫和实体器官移植免疫调节疗法相当丰富的经验,现在可以在这个独特的患者人群3,21-长期移植存活。然而,对于移植的维护和生存需要长期免疫抑制显著的副作用仍然限制了这些提高生活而不是救命重建模式3,22,23…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由陆军,海军,美国国立卫生研究院,空军,VA和卫生事务的支持,支持AFIRM II的努力,在奖号W81XWH-13-2-0053。美国陆军医学研究收购活动,820钱德勒街,德特里克堡MD 21702-5014是颁发和管理采购办公室。意见,解释,结论和建议是那些作者的,不一定是由美国国防部批准。

笔者想在这项研究中感谢杰西卡IZZI,DVM,卡罗琳·加勒特,DVM和朱莉·沃森,DVM的出色兽医支持。

Materials

Suture, 6-0 Nylon MWI 31849
Suture, 6-0 Polysorb MWI 72667
Suture, 10-0 Nylon Aero Surgical TK-107038
Polyimide Tubing, Size 25 Vention Medical 141-0023
Polyimide Tubing, Size 27 Vention Medical 141-0015
Microvascular Clamps (Single) Synovis 00396
Microvascular Clamps (Double) Synovis 00414
Micro-Scissors Synovis SAS-18
Micro-Forceps Synovis FRS-15 RM-8
Micro-Dilators Synovis FRS-15 RM-8d.1
Micro-Needledriver Synovis C-14
Micro-Clamp Applicator Synovis CAF-4
Micro-Flushing Needle Hamilton N/A 10MM, 30°, 33G
Lactated Ringers Solution Fisher Scientific NC9968051
Buprenorphine N/A N/A DEA Number required; Obtained from hosptial pharmacy.
Enrofloxacin; Baytril Bayer Health Care 186599
Heparin N/A N/A Obtained from hosptial pharmacy

References

  1. Khalifian, S., et al. Facial transplantation: the first 9 years. Lancet. , (2014).
  2. Petruzzo, P., Dubernard, J. M. The International Registry on Hand and Composite Tissue allotransplantation. Clin. Transpl. , 247-253 (2011).
  3. Shores, J. T., Brandacher, G., Lee, W. A. Hand and Upper Extremity Transplantation: An Update of Outcomes in the Worldwide Experience. Plast. Reconstr. Surg. , (2014).
  4. Levi, D. M., et al. Transplantation of the abdominal wall. Lancet. 361, 2173-2176 (2003).
  5. Strome, M., et al. Laryngeal transplantation and 40-month follow-up. N.Engl.J. Med. 344, 1676-1679 (2001).
  6. Rose, K. G., Sesterhenn, K., Wustrow, F. Tracheal allotransplantation in man. Lancet. 1, 433 (1979).
  7. Hofmann, G. O., et al. Allogeneic vascularized transplantation of human femoral diaphyses and total knee joints–first clinical experiences. Transplant. Proc. 30, 2754-2761 (1998).
  8. Hu, W., et al. A preliminary report of penile transplantation. Eur. Urol. 50, 851-853 (2006).
  9. Brannstrom, M., et al. Livebirth after uterus transplantation. Lancet. , (2014).
  10. Sarhane, K. A., et al. Diagnosing skin rejection in vascularized composite allotransplantation: advances and challenges. Clin. Transplant. 28, 277-285 (2014).
  11. Schneeberger, S., Khalifian, S., Brandacher, G. Immunosuppression and monitoring of rejection in hand transplantation. Tech. Hand Up. Extrem. Surg. 17, 208-214 (2013).
  12. Lee, W. P., et al. Relative antigenicity of components of a vascularized limb allograft. Plast. Reconstr. Surg. 87, 401-411 (1991).
  13. Sucher, R., et al. Hemiface allotransplantation in the mouse. Plast. Reconstr. Surg. 129, 867-870 (2012).
  14. Ibrahim, Z., et al. A modified heterotopic swine hind limb transplant model for translational vascularized composite allotransplantation (VCA) research. J Vis Exp. , (2013).
  15. Oberhuber, R., et al. Murine cervical heart transplantation model using a modified cuff technique. J Vis Exp. , (2014).
  16. Sucher, R., et al. Mouse hind limb transplantation: a new composite tissue allotransplantation model using nonsuture supermicrosurgery. Transplantation. 90, 1374-1380 (2010).
  17. Maglione, M., et al. A novel technique for heterotopic vascularized pancreas transplantation in mice to assess ischemia reperfusion injury and graft pancreatitis. Surgery. 141, 682-689 (2007).
  18. Sucher, R., et al. Orthotopic hind-limb transplantation in rats. J Vis Exp. , (2010).
  19. Zou, Y., Brandacher, G., Margreiter, R., Steurer, W. Cervical heterotopic arterialized liver transplantation in the mouse. J. Surg. Res. 93, 97-100 (2000).
  20. Zhang, F., et al. Development of a mouse limb transplantation model. Microsurgery. 19, 209-213 (1999).
  21. Schneeberger, S., et al. Upper-extremity transplantation using a cell-based protocol to minimize immunosuppression. Ann. Surg. 257, 345-351 (2013).
  22. Azari, K., Brandacher, G. Vascularized composite allotransplantation. Curr Opin Organ Transplant. 18, 631-632 (2013).
  23. Pomahac, B., Gobble, R. M., Schneeberger, S. Facial and hand allotransplantation. Cold Spring Harb. Perspect. Med. 4, (2014).
  24. Chong, A. S., Alegre, M. L., Miller, M. L., Fairchild, R. L. Lessons and limits of mouse models. Cold Spring Harb. Perspect. Med. 3, a015495 (2013).
  25. Lin, C. H., et al. The neck as a preferred recipient site for vascularized composite allotransplantation in the mouse. Plast. Reconstr. Surg. 133, 133e-141e (2014).
  26. Shapiro, R. I., Cerra, F. B. A model for reimplantation and transplantation of a complex organ: the rat hind limb. J. Surg. Res. 24, 501-506 (1978).
  27. Leto Barone, A. A., et al. The gracilis myocutaneous free flap in swine: an advantageous preclinical model for vascularized composite allograft transplantation research. Microsurgery. 33, 51-55 (2013).
  28. Mathes, D. W., et al. A preclinical canine model for composite tissue transplantation. J. Reconstr. Microsurg. 26, 201-207 (2010).
  29. Barth, R. N., et al. Prolonged survival of composite facial allografts in non-human primates associated with posttransplant lymphoproliferative disorder. Transplantation. 88, 1242-1250 (2009).
  30. Brandacher, G., Grahammer, J., Sucher, R., Lee, W. P. Animal models for basic and translational research in reconstructive transplantation. Birth Defects Res C Embryo Today. 96, 39-50 (2012).
  31. Foster, R. D., Liu, T. Orthotopic hindlimb transplantation in the mouse. J. Reconstr. Microsurg. 19, 49 (2002).
  32. Tung, T. H., Mohanakumar, T., Mackinnon, S. E. Development of a Mouse Model for Heterotopic Limb and Composite-Tissue Transplantation. J. Reconstr. Microsurg. 17, 267-274 (2001).
  33. Zhang, F., Shi, D. Y., Kryger, Z., Moon, W. Development of a mouse limb transplantation model. Microsurgery. 19 (5), 209-213 (1999).
  34. Schneeberger, S., et al. Atypical acute rejection after hand transplantation. Am. J. Transplant. 8, 688-696 (2008).
  35. Mathes, D. W., et al. Stable mixed hematopoietic chimerism permits tolerance of vascularized composite allografts across a full major histocompatibility mismatch in swine. Transpl. Int. 27, 1086-1096 (2014).
  36. Yamada, Y., et al. Use of CTLA4Ig for induction of mixed chimerism and renal allograft tolerance in nonhuman primates. Am. J. Transplant. 14, 2704-2712 (2014).
  37. Sachs, D. H., Kawai, T., Sykes, M. Induction of tolerance through mixed chimerism. Cold Spring Harb. Perspect. Med. 4, a015529 (2014).
  38. Kawai, T., et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 358, 353-361 (2008).
  39. Kawai, T., Sachs, D. H. Tolerance induction: hematopoietic chimerism. Curr Opin Organ Transplant. 18, 402-407 (2013).
  40. Kawai, T., Sachs, D. H., Sykes, M., Cosimi, A. .. B. HLA-mismatched renal transplantation without maintenance immunosuppression. N. Engl. J. Med. 368, 1850-1852 (2013).
  41. Leventhal, J., et al. Chimerism and tolerance without GVHD or engraftment syndrome in HLA-mismatched combined kidney and hematopoietic stem cell transplantation. Sci. Transl. Med. 4, 124-128 (2012).
  42. Cendales, L. C., et al. The Banff 2007 working classification of skin-containing composite tissue allograft pathology. Am. J. Transplant. 8, 1396-1400 (2008).
check_url/kr/53483?article_type=t

Play Video

Cite This Article
Furtmüller, G. J., Oh, B., Grahammer, J., Lin, C., Sucher, R., Fryer, M. L., Raimondi, G., Lee, W. A., Brandacher, G. Orthotopic Hind Limb Transplantation in the Mouse. J. Vis. Exp. (108), e53483, doi:10.3791/53483 (2016).

View Video