Summary

蛋白质的MS检测快速酶法处理与流通型微反应器

Published: April 06, 2016
doi:

Summary

A quick protocol for proteolytic digestion with an in-house built flow-through tryptic microreactor coupled to an electrospray ionization (ESI) mass spectrometer is presented. The fabrication of the microreactor, the experimental setup and the data acquisition process are described.

Abstract

绝大多数质谱(MS)的基础的蛋白质分析方法涉及一个酶消化步骤之前检测,通常与胰蛋白酶。这一步是必要的小分子量肽的产生,一般用MW <3000-4000道尔顿,落入质谱仪器的有效扫描范围内的。传统的协议包括在37ºCO / N酶消化。最近的进展已经导致的各种策略,典型地涉及使用的微反应器与固定化酶或范围减少所需蛋白水解消化的时间到几分钟互补物理过程(的例如微波或高的发展压力)。在这项工作中,我们描述一个简单和成本效益的方法,可以在任何实验室来实现用于实现蛋白质的快速酶消化。的蛋白(或蛋白混合物)被吸附在C18键合反相PERFormance在毛细管柱预装液相色谱(HPLC)二氧化硅粒子和胰蛋白酶在含水缓冲液被注入过的时间很短的周期的颗粒。以使上线MS检测时,胰蛋白酶肽洗脱与在MS中离子源直接增加有机含量的溶剂体系。这种方法避免了使用高价的固定化酶颗粒,并且并不需要任何辅助完成的过程。蛋白消化完整样品分析可以在不到〜3分钟分别完成和〜30分钟。

Introduction

纯化的蛋白质的鉴定和表征经常被使用MS技术实现的。将蛋白质消化酶和它的肽通过MS进一步分析通过使用简单的输注实验装置。蛋白水解消化是必要,用于产生落在在大多数MS分析仪的有用质量范围小的肽片段,并可以通过低能量碰撞诱导解离很容易地分片,以产生氨基酸序列的信息。对分离的蛋白质或简单的蛋白质的混合​​物,对于之前MS检测的肽的色谱分离不再需要。 25-50肽的混合物可以通过与直接注射泵在MS离子源注入样品容易地进行分析。

质谱仪可以执行分析和短的时间框架内确认的蛋白质的序列。随着现代数据采集方法,该方法可以完成瓦特ithin几分钟甚至几秒钟。在完成上一个短的时间尺度了整个过程的限制因素是水解消化步骤。通常,这是执行在几个小时(或O / N),在溶液中,在37ºC,使用基板:的(50-100)酶:1的比率。为了减少酶消化时间为几分钟或几秒钟,固定化酶微反应器,微流控反应器或市售墨盒,已经描述的形式。1-6典型地,所述酶通过共价,非共价/物理吸附,复杂的固定化形成或包封,3,6-酶促过程的增强效率被启用大的表面-体积和酶与底物的比率。固定化反应器的其它优点包括从MS分析酶减少自溶和干扰,提高了酶的稳定性和可重用性。各种方法,使用玻璃或聚合物微制造装置进行了说明,利用由抗体-抗原相互作用固定于磁珠酶,7,8-截留在金纳米颗粒的网络,9包封在二氧化钛-氧化铝溶胶-凝胶10和纳米沸石,11或通过的Ni-NTA或His-标签形成复合物捕获。6可替换地与固定化酶开管毛细管已经开发,以及12另外,增强的蛋白水解切割已经通过使用受控微波照射13或压力辅助或压力循环技术(PCT)的用于降低反应时间以30-120证实分14

尽管固定化酶的反应器的多个优势,商业墨盒成本高,常规使用的微流体设备的可用性是有限的,并且在需要使用微波或PCT技术结果另外的仪器。这项工作的目的是开发circumve的方法NTS这些缺点,并能在每一个实验室很容易地实现与用于制备在几分钟内MS分析进行蛋白的酶裂解的简单而有效的方法来赋予的研究人员。该方法依赖于使用的疏水性,C18-颗粒是在毛细管或微流体装置预加载,并且对这些颗粒随后通过酶消化感兴趣的蛋白质(多个)的酶在输液过程中吸附填充床和捕获蛋白(S)。在这种方法中,基板通过非共价相互作用固定,并且所述酶输注的固定化蛋白质。在蛋白水解消化效率提高了,揭露用于酶处理,减压距离和扩散时间和从粒子表面的蛋白质的大颗粒的表面积,提高质量传递,没有共价连接,可能会影响酶的活性,能快速evaluat不同的酶,可处理性,以及复用电子组合,如果过程中的微流体格式被执行。这种方法表现出与使用标准蛋白和胰蛋白酶的事先到ESI-MS检测水解消化最常用的酶的混合物。在这项研究中用于检测的质谱仪是一个线性阱四极(LTQ)仪器。

Protocol

1.毛细管微反应器的研制切割100μm的内径(ID)×360微米的外径(OD)的毛细管到7-8厘米的长度,并且在20微米内径x 90微米的OD毛细管3-5厘米的玻璃毛细管劈刀;这两个毛细管末端有一个干净,直切,在显微镜下检查,没有任何突出的毛刺。 插入20μm的内径x 90微米的OD毛细管导入100微米内径×360微米外径的毛细管的一端,为〜6mm的长度;在需要的情况下,在显微镜下观察此操作。 ?…

Representative Results

蛋白水解消化方法的一个代表性的结果上的蛋白质的混合物同时进行,与上述微反应器( 图1或2),在表1中提供。表包括标识特定蛋白质的独特肽序列,交叉相关评分(Xcorr)( 即 ,表征实验到理论匹配相应串联质谱的质量得分),错过分裂的数量,所述肽电荷状态(z)的和质量/电荷(质子化肽的M / Z)。在蛋白质水平,该表提供了蛋白…

Discussion

在这项工作中所描述的微反应器提供了一个易于实现用于进行蛋白质的酶消化,以使在不到30分钟MS分析和鉴定的实验装置。该系统中,在比常规方法的不同的优点,包括简化,高速,低试剂消耗和低的成本。特别是,没有必要使用昂贵的固定化的胰蛋白酶珠和墨盒。毛细管微反应器的制备是简单的( 图1A),并且可以从标准用品,在一个色谱实验室通常发现在几分钟内完成。而反相C…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NSF/DBI-1255991 grant to IML.

Materials

Ion trap ESI-MS Thermo Electron LTQ The LTQ mass spectrometer is used for acquiring tandem MS data
XYZ stage Newport Multiple parts The home-built XYZ stage is used to adapt the commercial LTQ nano-ESI source to receive input from various sample delivery systems
Stereo microscope Edmund optics G81-278 The microscope is used to observe the microreactor packing process
Analytical balance/Metler VWR 46600-204 The balance is used to weigh the protein samples
Ultrasonic bath/Branson VWR 33995-540 The sonic bath is used for mixing/homogenizing the samples and dispersing the C18 particle slurry
Syringe pump 22 Harvard Apparatus 552222 The micropump is used for loading, rinsing and eluting the sample and the enzyme on and from the packed capillary microreactor
Milli-Q ultrapure water system  EMD Millipore ZD5311595  The MilliQ water system is used to prepare purified DI water
Pipettor/Eppendorf (1000 µL) VWR 53513-410 The pipettor is used to measure small volumes of sample solutions
Pipettor/Eppendorf (100 µL) VWR 53513-406 The pipettor is used to measure small volumes of sample solutions
Pipettor/Eppendorf (10 µL) VWR 53513-402 The pipettor is used to measure small volumes of sample solutions
Fused silica capillary (100 µm ID x 360 µm OD) Polymicro Technologies TSP100375 This capillary is used for the fabrication of the microreactor
Fused silica capillary (20 µm ID x 100 µm OD) Polymicro Technologies TSP020090 This capillary is used for the fabrication of the ESI emitter
Fused silica capillary (50 µm ID x 360 µm OD) Polymicro Technologies TSP050375 This capillary is used to transfer the samples and the eluent from the syringe pump to the capillary microreactor
Glass capillary cleaver Supelco 23740-U This is a tool for cutting fused silica capillaries at the desired length
Glue Eclectic Products E6000 Craft This glue is used for securing the ESI emitter into the capillary microreactor or the microfluidic chip
Epoxy glue Epo-Tek 353NDT This glue is used to seal the microfluidic inlet hole through which the C18 particles are loaded
Reversed phase C18 particles (5 µm) Agilent Technologies Zorbax 300SB-C18 These are C18 particles on which the proteins are adsorbed; the particles were extracted from a 4 mm x 20 cm C18 LC column from Agilent
Syringe/glass (250 µL) Hamilton 81130-1725RN The glass syringes are used to load the C18 particle slurry in the capillary microreactor and to deliver the sample and eluents to the microreactor
Internal reducing PEEK Union (1/16” to 1/32”) Valco ZRU1.5FPK This union is used to connect the 250 µL syringe to the microreactor for loading the 5 µm particle slurry
Stainless steel union (1/16”) Valco ZU1XC The stainless steel union is used to connect the glass syringe needle to the infusion capillary
Microvolume PEEK Tee connector (1/32”) Valco MT.5XCPK The Peek tee is used to connect the sample transfer capillary to the capillary microreactor; on its side arm, it enables the insertion of the Pt wire
Tee connector (light weight) Valco C-NTXFPK This Tee connector is used to apply ESI voltage to the microfluidic chip through the sample transfer line
Pt wire (0.404 mm) VWR 66260-126 The Pt wire provides electrical connection for ESI generation and is connected to the mass spectrometer ESI power supply
PTFE tubing (1/16” OD) Valco TTF115-10FT The Teflon tubing is used to enable an air-tight connection between the syringe needle and the stainless steel union 
PEEK tubing (0.015“ ID x 1/16” OD) Upchurch Scientific 1565 The Peek tubing is used as a sleeve to enable an air-tight connection between the stainless steel union and the 50 µm ID transfer capillary
PEEK tubing (0.015” ID x 1/32” OD) Valco TPK.515-25 The Peek tubing is used as a sleeve to enable a leak-free connection between the fused silica capillaries and the Peek Tee
Clean-cut polymer tubing cutter Valco JR-797 This cutter is used to pre-cut the 1/16” and 1/32’ Peek polymer tubing that is used as sleeve for leak-free connections in pieces of ~4-5 cm in length
Amber vial (2 mL) Agilent  HP-5183-2069 The vials are used to prepare sample solutions and the C18 particle slurry 
Amber vial (4 mL) VWR 66011-948 The vials are used to prepare sample solutions
Polypropylene tube (15 mL) Fisher 12-565-286D The vials are used to prepare buffer solutions
Cylinder (100 mL) VWR 24710-463 The cylinder is used to measure volumes of solvent
Cylinder (10 mL) VWR 24710-441 The cylinder is used to measure volumes of solvent
Pipette tips (1000 µL) VWR 83007-386 The pipette tips are used to measure small volumes of sample solutions
Pipette tips (100 µL) VWR 53503-781 The pipette tips are used to measure small volumes of sample solutions
Pipette tips (10 µL) VWR 53511-681 The pipette tips are used to measure small volumes of sample solutions
Glass substrates Nanofilm B270 white crown, 3” x 3” These are glass substrates for microchip fabrication
Male nut fitting (1/16”) Upchurch P203X This fitting is used for connecting transfer capillaries to the microfluidic chip
Nanoport assembly Upchurch N-122H This fitting is used for connecting transfer capillaries to the microfluidic chip
Reagents
Protein standards Sigma Multiple #
Acetonitrile, HPLC grade Fisher A955
Methanol, HPLC grade Fisher A452
Isopropanol, HPLC grade Sigma 650447
Trifluoroacetic acid Sigma 302031
Ammonium bicarbonate Aldrich A6141
Trypsin, sequencing grade Promega V5111

References

  1. Petersen, D. H. Microfluidic Bioreactors. Encyclopedia of Microfluidics and Nanofluidics. , (2014).
  2. Matosevic, S., Szita, N., Baganz, F. Fundamentals and applications of immobilized microfluidic enzymatic reactors. J. Chem. Technol. Biotechnol. 86 (3), 325-334 (2011).
  3. Liu, Y., Liu, B., Yang, P., Girault, H. H. Microfluidic enzymatic reactors for proteome research. Anal. Bioanal. Chem. 390 (1), 227-229 (2008).
  4. Wu, H., Zhai, J., Tian, Y., Lu, H., Wang, X., Jia, W., Liu, B., Yang, P., Xu, Y., Wang, H. Microfluidic enzymatic-reactors for peptide mapping: strategy, characterization, and performance. LabChip. 4 (6), 588-597 (2004).
  5. Jin, L. J., Ferrance, J., Sanders, J. C., Landers, J. P. A microchip-based proteolytic digestion system driven by electroosmotic pumping. LabChip. 3 (1), 11-18 (2003).
  6. Asanomi, Y., Yamaguchi, H., Miyazaki, M., Maeda, H. Enzyme-immobilized microfluidic process reactors. Molecules. 7 (16), 6041-6059 (2011).
  7. Aravamudhan, S., Joseph, P. J., Kuklenyik, Z., Boyer, A. E., Barr, J. R. Integrated microfluidic enzyme reactor mass spectrometry platform for detection of anthrax lethal factor. , 1071-1074 (2009).
  8. Liu, X., Lo, R. C., Gomez, F. A. Fabrication of a microfluidic enzyme reactor utilizing magnetic beads. Electrophoresis. 30 (12), 2129-2133 (2009).
  9. Liu, Y., Xue, Y., Ji, J., Chen, X., Kong, J., Yang, P., Girault, H. H., Liu, B. Gold nanoparticle assembly microfluidic reactor for efficient on-line proteolysis. Mol. Cell. Proteomics. 6 (8), 1428-1436 (2007).
  10. Wu, H., Tian, Y., Liu, B., Lu, H., Wang, X., Zhai, J., Jin, H., Yang, P., Xu, Y., Wang, H. Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping: design, characterization, and performance. J. Proteome Res. 3 (6), 1201-1209 (2004).
  11. Ji, J., Zhang, Y., Zhou, X., Kong, J., Tang, Y., Liu, B. Enhanced protein digestion through the confinement of nanozeolite-assembled microchip reactors. Anal. Chem. 80 (7), 2457-2463 (2008).
  12. Hustoft, H. K., Brandtzaeg, O. K., Rogeberg, M., Misaghian, D., Torsetnes, S. B., Greibrokk, T., Reubsaet, L., Wilson, S. R., Lundanes, E. Integrated enzyme reactor and high resolving chromatography in "sub-chip" dimensions for sensitive protein mass spectrometry. Scientific Reports. 3 (3511), 1-7 (2013).
  13. Pramanik, B. N., Mirza, U. A., Ing, Y. H., Liu, Y. H., Bartner, P. L., Weber, P. C., Bose, A. K. Microwave-enhanced enzyme reaction for protein mapping by mass spectrometry: A new approach to protein digestion in minutes. Protein Sci. 11 (11), 2676-2687 (2002).
  14. Olszowy, P. P., Burns, A., Ciborowski, P. S. Pressure-assisted sample preparation for proteomic analysis. Anal. Biochem. 438 (1), 67-72 (2013).
  15. Lord, G. A., Gordon, D. B., Myers, P., King, B. W. Tapers and restrictors for capillary electrochromatography and capillary electrochromatography-mass spectrometry. J. Chromatogr. A. 768, 9-16 (1997).
  16. Lazar, I. M., Kabulski, J. L. Microfluidic LC Device with Orthogonal Sample Extraction for On-Chip MALDI-MS Detection. Lab Chip. 13 (11), 2055-2065 (2013).
  17. Harrison, D. J., Manz, A., Fan, Z. H., Ludi, H., Widmer, H. M. Capillary electrophoresis and sample injection systems on a planar glass chip. Anal. Chem. 64 (17), 1926-1932 (1992).
  18. Jacobson, S. C., Hergenroder, R., Koutny, L. B., Warmack, R. J., Ramsey, J. M. Effects of Injection Schemes and Column Geometry on the Performance of Microchip Electrophoresis Devices. Anal. Chem. 66 (7), 1107-1113 (1994).
  19. Armenta, J. M., Perez, M. J., Yang, X., Shapiro, D., Reed, D., Tuli, L., Finkielstein, C. V., Lazar, I. M. Fast Proteomic Protocol for Biomarker Fingerprinting in Cancerous Cells. J. Chromatogr. A. 1217, 2862-2870 (2010).
  20. Doucette, A., Craft, D., Li, L. Mass Spectrometric Study of the Effects of Hydrophobic Surface Chemistry and Morphology on the Digestion of Surface-Bound Proteins. J. Am. Soc. Mass Spectrom. 14, 203-214 (2003).
  21. Lazar, I. M., Trisiripisal, P., Sarvaiya, H. A. Microfluidic Liquid Chromatography System for Proteomic Applications and Biomarker Screening. Anal. Chem. 78 (15), 5513-5524 (2006).
  22. Lazar, I. M., Karger, B. L. Multiple Open-Channel Electroosmotic Pumping System for Microfluidic Sample Handling,&#34. Anal. Chem. 74 (24), 6259-6268 (2002).
  23. Lazar, I. M., Rockwood, A. L., Lee, E. D., Sin, J. C. H., Lee, M. L. High-speed TOFMS Detection for Capillary Electrophoresis. Anal. Chem. 71 (13), 2578-2581 (1999).
check_url/kr/53564?article_type=t

Play Video

Cite This Article
Lazar, I. M., Deng, J., Smith, N. Fast Enzymatic Processing of Proteins for MS Detection with a Flow-through Microreactor. J. Vis. Exp. (110), e53564, doi:10.3791/53564 (2016).

View Video