Summary

利用双光子显微镜的艾滋病毒引起的神经炎症的小鼠模型脑血管结构的量化

Published: January 12, 2016
doi:

Summary

This paper describes a method by which the vascular architecture in the brain can be quantified using in vivo and ex vivo two-photon microscopy.

Abstract

Human Immunodeficiency Virus 1 (HIV-1) infection frequently results in HIV-1 Associated Neurocognitive Disorders (HAND), and is characterized by a chronic neuroinflammatory state within the central nervous system (CNS), thought to be driven principally by virally-mediated activation of microglia and brain resident macrophages. HIV-1 infection is also accompanied by changes in cerebrovascular blood flow (CBF), raising the possibility that HIV-associated chronic neuroinflammation may lead to changes in CBF and/or in cerebral vascular architecture. To address this question, we have used a mouse model for HIV-induced neuroinflammation, and we have tested whether long-term exposure to this inflammatory environment may damage brain vasculature and result in rarefaction of capillary networks. In this paper we describe a method to quantify changes in cortical capillary density in a mouse model of neuroinflammatory disease (HIV-1 Tat transgenic mice). This generalizable approach employs in vivo two-photon imaging of cortical capillaries through a thin-skull cortical window, as well as ex vivo two-photon imaging of cortical capillaries in mouse brain sections. These procedures produce images and z-stack files of capillary networks, respectively, which can be then subjected to quantitative analysis in order to assess changes in cerebral vascular architecture.

Introduction

在病毒感染的急性期的人类免疫缺陷病毒-1(HIV-1)的侵入脑,和生产性感染都小胶质细胞和脑定居巨噬细胞,导致它们的活化 – 并且两个来自宿主的炎症介质和可溶性HIV-1的释放virotoxins如Tat和gp120的( 1,2-综述)。因此,慢性神经炎状态成为中枢神经系统,这被认为是有助于HIV-1相关的神经认知障碍(手),3-5的发病机制建立。

HIV-1的Tat或小鼠的中枢神经系统内白细胞介素(IL)-17A的慢性过度表达已被证明导致微血管稀疏6,7。这就提出了慢性神经炎症可以通过对脑血管的影响造成的手发病的可能性。为了进一步探讨这个问题,我们已经制定的方法来量化脑血管STRUCTures的。

本文介绍的方法用于定量毛细管节点,毛细管段的数量,平均段长度,总段长度,平均毛细管直径,并通过一薄的颅骨皮质窗口使用毛细管网络的体内显像总毛细管体积(从先前描述的改性协议)8,9,以及离体成像的脑切片中,使用双光子显微镜。这种组合方法提供用于脑血管的参数的整体定量,由于体内薄颅骨皮质窗口允许大脑保护环境,同时毛细管网络在脑切片的离体成像能够重建完整,立体毛细管网络 – 然后可以使用市售软件定量。

Protocol

罗切斯特大学委员会的动物资源学院批准在本文中进行的所有程序。 1.术前准备(和鼠标) 所有必需的设备准备手术区。消毒预先用70%的乙醇的过程​​中使用的所有工具。或者,使用玻璃珠灭菌或高压灭菌消毒的工具。 鼠标放置在异氟醚感应室,连接到一个异氟烷蒸发器。以1升/分钟的速率设置异氟烷水平至4%。 注意:用强力霉素(DOX)诱导的HIV-1的…

Representative Results

薄颅骨皮质窗口允许用于体内双光子皮质毛细血管成像( 图1)。合适的区域,图像显示众多的,不同的毛细血管( 图1A)。在同一视场,不存在动脉细胞壁自发荧光,以及可能还有其他的荧光信号,如胶原荧光,诱发二次谐波生成11(图1B)。 一旦脑切片的准备已完成,摄…

Discussion

此处所描述的方法可用于分析脑微血管结构在大范围的实验模型/设置。对于这种方法的成功,有三个关键步骤,必须要掌握。首先,将薄颅骨窗不能损伤颅骨或底层大脑。这是很容易变薄时穿破头骨,或引起热诱导的血管渗漏。这可以通过摄像干扰作为荧光染料将泄漏到焦点的平面中,并掩盖了毛细血管。如果颅骨薄头骨制备过程中频频打破,它很可能是过大的下行压力造成的。握住微扭矩钻尽…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Maria Jepson, Dr. Paivi Jordan, and Dr. Linda Callahan at the University of Rochester Multiphoton Core for technical advice throughout the completion of this protocol. We also thank Dr. Changyong Feng for expert statistical advice, and Dr. Maiken Nedergaard at the University of Rochester Medical Center for the headplate design used in this paper. This work was supported in part by grants T32GM007356 and R01DA026325 from the National Institutes of Health (NIH); and by the University of Rochester Center for AIDS Research grant P30AI078498 (NIH).

Materials

Leica Microscope Leica Inc. MZ8
High Intensity Illuminator Dolan-Jenner 180
Heating Pad Stryker  TP3E
T/PUMP Gaymar Industries, Inc. TP-500
TEC-4 Isoflurane Vaporizer Datex Ohmeda 447
Artificial Tear Gel Butler AHS 7312
Povidone-Iodine solution  Aplicare 52380-1855-9
Extra Fine Bonn Scissors Fine Science Tools 14084-08
Dumot #5 Forceps Fine Science Tools 11295-10
Dumont #5/45 Forceps Fine Science Tools 11251-35
Ferric Chloride Solution Ricca Chemical Company 3120-16
Loctite 454 Prism Instant Adhesive Gel Henkel 45404
Dental Cement Stoelting 51459
Microtoruqe II Handpiece Kit Pearson Dental R14-0002
005 Burr for Micro Drill Fine Science Tools 19007-05
Norland Blade (Dental Microblade) Salvin Dental 6900
Urethane Sigma-Aldrich U2500 Group 2B Carcinogen
Braided Suture Ethicon 735G
Vannas Spring Scissors Fine Science Tools 15000-03
 Arterial Catheter SAI Infusion Technologies MAC-01 The end of the catheter was manually stretched out in order to decrease its diameter. 
Blood Pressure Moniter World Precision Intruments SYS-BP1
Blood Pressure Transducer and Cable World Precision Intruments BLPR2
RAPIDLab Blood Gas Analyzer  Siemens  248
40 μl Capillary Tube VWR 15401-413
Texas Red-dextran (70,000 MW, 10 mg/kg dissolved in saline) Invitrogen D-1830
Adult Mouse Brain Slicer Matrix Zivic Instruments BSMAS001-1
Olympus Fluoview 1000 AOM-MPM Multiphoton Microscope Olypmus FV-1000 MPE
MaiTai HP DeepSee Ti:Sa laser Spectra-Physics
ImageJ Software National Institutes of Health (NIH) Available at http://rsb.info.nih.gov/ij/download.html
Amira Software Visage Imaging 

References

  1. Kraft-Terry, S. D., Buch, S. J., Fox, H. S., Gendelman, H. E. A coat of many colors: neuroimmune crosstalk in human immunodeficiency virus infection. Neuron. 64 (1), 133-145 (2009).
  2. Ghafouri, M., Amini, S., Khalili, K., Sawaya, B. E. HIV-1 associated dementia: symptoms and causes. Retrovirology. 3, 28 (2006).
  3. Antinori, A., et al. Updated research nosology for HIV-associated neurocognitive disorders. Neurology. 69 (18), 1789-1799 (2007).
  4. Clifford, D. B., Ances, B. M. HIV-associated neurocognitive disorder. The Lancet. Infectious diseases. 13 (11), 976-986 (2013).
  5. Lindl, K. A., Marks, D. R., Kolson, D. L., Jordan-Sciutto, K. L. HIV-associated neurocognitive disorder: pathogenesis and therapeutic opportunities. Journal of neuroimmune pharmacology : the official journal of the Society on NeuroImmune Pharmacology. 5 (3), 294-309 (2010).
  6. Zimmermann, J., et al. CNS-targeted production of IL-17A induces glial activation, microvascular pathology and enhances the neuroinflammatory response to systemic endotoxemia. PloS one. 8 (2), e57307 (2013).
  7. Silva, J. N., et al. Chronic central nervous system expression of HIV-1 Tat leads to accelerated rarefaction of neocortical capillaries and loss of red blood cell velocity heterogeneity. Microcirculation. 21 (7), 664-676 (2014).
  8. Marker, D. F., Tremblay, M. E., Lu, S. M., Majewska, A. K., Gelbard, H. A. A thin-skull window technique for chronic two-photon in vivo imaging of murine microglia in models of neuroinflammation. Journal of visualized experiments : JoVE. (43), (2010).
  9. Kleinfeld, D., Mitra, P. P., Helmchen, F., Denk, W. Fluctuations and stimulus-induced changes in blood flow observed in individual capillaries in layers 2 through 4 of rat neocortex. Proceedings of the National Academy of Sciences of the United States of America. 95 (26), 15741-15746 (1998).
  10. Bruce-Keller, A. J., et al. Morphine causes rapid increases in glial activation and neuronal injury in the striatum of inducible HIV-1 Tat transgenic mice. Glia. 56 (13), 1414-1427 (2008).
  11. Zoumi, A., Yeh, A., Tromberg, B. J. Imaging cells and extracellular matrix in vivo by using second-harmonic generation and two-photon excited fluorescence. Proceedings of the National Academy of Sciences of the United States of America. 99 (17), 11014-11019 (2002).
  12. Silva, J., et al. Transient hypercapnia reveals an underlying cerebrovascular pathology in a murine model for HIV-1 associated neuroinflammation: role of NO-cGMP signaling and normalization by inhibition of cyclic nucleotide phosphodiesterase-5. Journal of neuroinflammation. 9, 253 (2012).
  13. Farber, N. E., et al. Region-specific and agent-specific dilation of intracerebral microvessels by volatile anesthetics in rat brain slices. Anesthesiology. 87 (5), 1191-1198 (1997).

Play Video

Cite This Article
Nishimura, C., Polesskaya, O., Dewhurst, S., Silva, J. N. Quantification of Cerebral Vascular Architecture using Two-photon Microscopy in a Mouse Model of HIV-induced Neuroinflammation. J. Vis. Exp. (107), e53582, doi:10.3791/53582 (2016).

View Video