Summary

日本鹌鹑胚胎的卵黄囊膜主内胚上皮细胞培养

Published: March 10, 2016
doi:

Summary

To study the mechanism of lipid utilization in yolk sac membranes during the late stages of avian embryonic development, we established a primary Japanese quail embryonic endodermal epithelial cell culture system.

Abstract

我们建立了一个内胚层上皮细胞培养模型(EEC)用于研究开发过程中由禽胚胎调解养分利用某些酶和蛋白质的功能。受精日本鹌鹑蛋在37℃下培养5天,然后卵黄囊膜(YSM)收集来建立欧洲经济共同体培养系统。我们从YSM分离胚胎内胚层层,和切片膜进入2 – 3毫米件和在24孔培养板播种前用胶原酶部分消化。该EECS繁殖出来的组织和准备​​好细胞培养研究。我们发现,EECS有体内 YSM的典型特征,例如,脂滴的累积,固醇O-酰基转移酶和脂蛋白脂肪酶的表达。部分消化处理显著上升EEC文化的成功率。利用EECS,我们证明了SOAT1的表达受cAMP的调节Ðependent蛋白激酶相关途径。这主要日本鹌鹑EEC培养体系是研究胚胎脂质运输和澄清参与禽流感在胚胎发育过程中的调解YSM养分的利用基因的作用的有用工具。

Introduction

禽流胚胎的主要营养资源是蛋黄,33%脂质,17%的蛋白质组成,和1%的灰分。1在胚胎发育期间,卵黄囊膜(YSM)从胚胎腹腔内生长并逐渐覆盖蛋黄表面。在2天胚胎开始,与脂质代谢和血管发生相关的基因的表达在YSM逐渐增加,并且YSM发展缓慢绒毛状突起。-8,9-这些突起增加蛋黄营养的吸收,以支持胚胎发育。该YSM是包含三个胚层,内胚层,中胚层和外胚层的胚外组织。14卵黄囊外胚层面临的蛋白和链接与卵黄膜轻轻地覆盖卵黄囊。内胚层上皮细胞直接面对朝蛋黄作为养分利用率的门户网站。6作为绝经年限的扩大,内胚层上皮细胞(EECS)可以通过十八分e和功能分为两组,区卵黄和面积vasculosa 7

区卵黄是由内胚层细胞是从胚胎遥远;区域vasculosa是由胚层细胞,并覆盖有血管和结缔组织有区别的EECS。通过5天的胚胎,蛋黄完全由YSM的外胚层和内胚层覆盖,血管面积增长迅速。在YSM吸收,重新组成并释放脂质(如蛋黄衍生的极低密度脂蛋白)和蛋白质进入胚胎循环系统9,2。因此,我们建立了主日本鹌鹑胚胎内胚层上皮细胞培养系统,来研究脂质的机制利用率YSM禽流胚胎发育过程中。

脂质如甘油三酯,磷脂,磷脂和胆固醇酯(CE)是禽类胚胎的主要能源。在开发的早期阶段,蛋黄脂类是Composed只有1.3%,CE和它上升到10-15%的鸟类胚胎发育的3期中,11胆固醇酯是由胆固醇在鸡胚YSM固醇O-酰基转移酶1(SOAT1)合成。4

胆固醇的存储形式是CE,CE是脂蛋白携带和脂蛋白被循环输送到组织中。13一个星期前舱门有鸟类胚胎的快速增长。大约在蛋黄中剩余的脂肪含量68%,在这一阶段被吸收。10由蛋黄脂质利用可通过EEC研究模型加以澄清机制。阿鸡欧洲经济共同体培养协议的建立是为了实现这一研究的目标。2,9然而,由于组织外植体的成功率很低,需要一种改进的欧洲经济共同体的细胞培养过程来研究某些酶和蛋白质的功能在通过介导养分的利用在开发过程中禽流感的胚胎。

Protocol

注:此步骤是Bauer 等人 2013年和中泽等人 ,2011年2,9制定了鸡模型文化协议的修改。 1.准备健康胚胎第5天的胚胎从日本鹌鹑将1男3女性成熟的日本鹌鹑在同一个笼子里。供应饲料自由采食和饮水 。调整的光在动物室的光的14小时和黑暗10小时。 每天收集在塑料袋受精卵在下午和保存在16℃的冰箱延缓胚胎的生长速度。 </li…

Representative Results

为了实现建立一个一致的和有用的细胞模型的目标,我们需要扩大和稳定增殖率和禽流EECS的性能。我们比较了没有酶消化与内胚层与蛋白水解酶,如胶原酶或胶原酶加分散酶的0.6单位部分消化的内胚层的直接温育。分散酶是一种氨基肽酶是水解的非极性氨基酸残基的N-末端肽键。而没有消化( 图1)相比,蛋白酶消化处理增加的细胞增殖,细胞生长不五天后孵…

Discussion

因为以前的培养系统只有有限的成功,需要一个更好的培养系统。日本鹌鹑YSM内胚层需要与蛋白水解酶如胶原酶松开细胞 – 细胞连接以实现在离体的外植体更好的生长性能的治疗。我们的数据显示,从局部消化处理的细胞数接种2天( 图1)后,比从未消化的组织培养更大。因此,部分水解消化是改善从YSM细胞产量的关键步骤。

在当前的文化协议的关键修改是部分…

Disclosures

The authors have nothing to disclose.

Acknowledgements

资金目前的协议的发展特别是“目标为一流大学计划”国立台湾大学,台湾(授权ID-104R350144),以及台湾科学技术部(授权ID的支持:科技部104 -2313-B-002-039-MY3)。我们特别感谢中心国立台湾大学生物技术用于提供动物房和实验室空间,目前的研究。

Materials

Dulbecco's Modified Eagle Medium Gibco by Life technologies 12800-017 10 X 1 L For wash the EECs pellets
D-MEM/F-12 Gibco by Life technologies 12400-024 10 X 1 L As the basal medium in culturing EECs
NBCS Gibco by Life technologies 16010-159 As the supplyment serum in culturing EECs
Pen-Strep Ampho. Solution BI (Biological Industries) 03-033-1B 100ml For attenuating the possible infection 
Collagenase Type IV Gibco by Life technologies 17104-019 1g  Collagenase is a protease with specificity for the bond between a neutral amino acid (X) and glycine in the sequence Pro-XGly-Pro. As the protease for dissociation of cells from primary tissue.
24 well plate FALCON® REF-353047 For EECs to attach and extension
50 ML PP centrifuge tubes Corning® CentriStarTM 430829 For transportion of membranes and enzyme digestion
50ML Conical bottomed Tube with Cap PRO TECH CT-50-PL-TW For transportion of membranes and enzyme digestion
Reciprocal shaking bath DEAGLE SB302 For better enzymatic digestion on membranes

References

  1. Abeyrathne, E. D., Lee, H. Y., Ahn, D. U. Egg white proteins and their potential use in food processing or as nutraceutical and pharmaceutical agents–a review. Poult Sci. 92 (12), 3292-3299 (2013).
  2. Bauer, R., Plieschnig, J. A., Finkes, T., Riegler, B., Hermann, M., Schneider, W. J. The developing chicken yolk sac acquires nutrient transport competence by an orchestrated differentiation process of its endodermal epithelial cells. J Biol Chem. 288 (2), 1088-1098 (2013).
  3. Ding, S. T., Nestor, K. E., Lilburn, M. S. The concentration of different lipid classes during late embryonic development in a randombred turkey population and a subline selected for increased body weight at sixteen weeks of age. Poult Sci. 74 (2), 374-382 (1995).
  4. Ding, S. T., Lilburn, M. S. The developmental expression of acyl-coenzyme A: cholesterol acyltransferase in the yolk sac membrane, liver, and intestine of developing embryos and posthatch turkeys. Poult Sci. 79 (10), 1460-1464 (2000).
  5. Ding, S. T., Lilburn, M. S. The ontogeny of fatty acid-binding protein in turkey (Meleagridis gallopavo) intestine and yolk sac membrane during embryonic and early posthatch development. Poult Sci. 81 (7), 1065-1070 (2002).
  6. Kanai, M., Soji, T., Sugawara, E., Watari, N., Oguchi, H., Matsubara, M., Herbert, D. C. Participation of endodermal epithelial cells on the synthesis of plasma LDL and HDL in the chick yolk sac. Microsc Res Tech. 35 (4), 340-348 (1996).
  7. Mobbs, I. G., McMillan, D. B. Structure of the endodermal epithelium of the chick yolk sac during early stages of development. Am J Anat. 155 (3), 287-309 (1979).
  8. Mobbs, I. G., McMillan, D. B. Transport across endodermal cells of the chick yolk sac during early stages of development. Am J Anat. 160 (3), 285-308 (1981).
  9. Nakazawa, F., Alev, C., Jakt, L. M., Sheng, G. Yolk sac endoderm is the major source of serum proteins and lipids and is involved in the regulation of vascular integrity in early chick development. Dev Dyn. 240 (8), 2002-2010 (2011).
  10. Noble, R. C., Cocchi, M. Lipid metabolism and the neonatal chicken. Prog Lipid Res. 29 (2), 107-140 (1990).
  11. Shand, J. H., West, D. W., McCartney, R. J., Noble, R. C., Speake, B. K. The esterification of cholesterol in the yolk sac membrane of the chick embryo. Lipids. 28 (7), 621-625 (1993).
  12. Speier, J. S., Yadgary, L., Uni, Z., Wong, E. A. Gene expression of nutrient transporters and digestive enzymes in the yolk sac membrane and small intestine of the developing embryonic chick. Poult Sci. 91 (8), 1941-1949 (2012).
  13. Walzem, R. L., Hansen, R. J., Williams, D. L., Hamilton, R. L. Estrogen Induction of VLDLy Assembly in Egg-Laying Hens. J Nutr. 129 (2), 467S-472S (1999).
  14. Yoshizaki, N., Soga, M., Ito, Y., Mao, K. M., Sultana, F., Yonezawa, S. Two-step consumption of yolk granules during the development of quail embryos. Dev Growth Differ. 46 (3), 229-238 (2004).
  15. . . alamarBlue Cell Viability Assay Protocol. , (2008).
  16. Lin, H. Y., Chen, C. C., Chen, Y. J., Lin, Y. Y., Mersmann, H. J., Ding, S. T. Enhanced Amelioration of High-Fat Diet-Induced Fatty Liver by Docosahexaenoic Acid and Lysine Supplementations. Biomed Res Int. 2014 (1), 310981 (2014).
  17. Lin, Y. Y., et al. Adiponectin receptor 1 regulates bone formation and osteoblast differentiation by GSK-3β/β-Catenin signaling in mice. Bone. 64, 147-154 (2014).
check_url/kr/53624?article_type=t

Play Video

Cite This Article
Lin, H. J., Wang, S. H., Pan, Y. H., Ding, S. Primary Endodermal Epithelial Cell Culture from the Yolk Sac Membrane of Japanese Quail Embryos. J. Vis. Exp. (109), e53624, doi:10.3791/53624 (2016).

View Video