Summary

חלבונים Immunofluorescence ניתוח של אנדוגני אקסוגניים centromere-קינטוכור

Published: March 03, 2016
doi:

Summary

Here we report protocols to detect endogenous and exogenous centromere-kinetochore proteins in human cells and quantify these protein levels at centromeres-kinetochores by indirect immunofluorescent staining through the use of fixation (paraformaldehyde, acetone, or methanol fixation).

Abstract

“Centromeres” and “kinetochores” refer to the site where chromosomes associate with the spindle during cell division. Direct visualization of centromere-kinetochore proteins during the cell cycle remains a fundamental tool in investigating the mechanism(s) of these proteins. Advanced imaging methods in fluorescence microscopy provide remarkable resolution of centromere-kinetochore components and allow direct observation of specific molecular components of the centromeres and kinetochores. In addition, methods of indirect immunofluorescent (IIF) staining using specific antibodies are crucial to these observations. However, despite numerous reports about IIF protocols, few discussed in detail problems of specific centromere-kinetochore proteins.1-4 Here we report optimized protocols to stain endogenous centromere-kinetochore proteins in human cells by using paraformaldehyde fixation and IIF staining. Furthermore, we report protocols to detect Flag-tagged exogenous CENP-A proteins in human cells subjected to acetone or methanol fixation. These methods are useful in detecting and quantifying endogenous centromere-kinetochore proteins and Flag-tagged CENP-A proteins, including those in human cells.

Introduction

"צנטרומר" הוגדר קלסי כאזורים של רקומבינציה meiotic מורחקת בגנטיקה ומאוחר יותר הוכר ההתכווצות העיקרית של הכרומוזומים mitotic, אשר ממלאת תפקיד חיוני פרדת כרומוזום מדויקת במהלך מיטוזה. "קינטוכור" תואר מבנים הרבים השכבתיים אשר נקלטים על ידי microtubules על פני השטח של צנטרומר, כפי שהיא מתגלה על ידי מיקרוסקופי אלקטרונים; "קינטוכור" הוגדרו מאוחר כמתחם macromolecular שמתאימה בבית centromere של הכרומוזומים mitotic. למרות הבדלים דרמטיים של רצפי DNA centromeric בין חוליות, מבנה קינטוכור ורכב הם שמורים ביותר. אינטראקציה דינמית בין microtubules ציר ואת קינטוכור נדרשת הפרדה נאמן של הכרומוזומים במהלך מיטוזה, ופגמים בעופרת פונקציה centromere-קינטוכור כדי aneuploidy ובכך סרטן.

Centromere ברוב אאוקריוטיםאין רצף DNA מוגדר, אבל מורכב מערכים גדולים (0.3-5 Mb) של DNA alphoid החוזר מורכב 171-נ"ב DNA α-הלווין. למעט ניצני שמרים, זהות centromere מושגת לא על ידי רצף ה- DNA אלא על ידי נוכחות של הנוקלאוזום מיוחד המכיל את גרסה H3 היסטון CenH3 (חלבון centromere [CENP-א] בבני אדם). 5 נוקלאוזום CENP-A למקם אל צלחת פנימית של קינטוכור יונק 7 ו נקשר לדנ"א 171-נ"ב α-הלווין. צנטרומר Active דורש CENP-A-המכיל נוקלאוזום לכוון את הגיוס של רשת centromere קשור מכוננת (CCAN) והחלבונים קינטוכור, שביחד להסדיר את הקובץ המצורף של הכרומוזומים אל ציר mitotic והתקדמות מחזור לאחר מכן במחסום הכישור.

לאור הראיות הנ"ל, CENP-A הוצע להיות סימן אפיגנטיים של centromere 8; עם זאת, התהליך שבאמצעותו-A CENP משולב iDNA centromeric n כדי וגורמי אחראי התאגדות זה טרם מאופיין היטב. תחום קצר מיקוד-centromere (CATD) מתגורר היסטון לקפל באזור CENP-A, והחלפת באזור המקביל H3 עם CATD מספיקה כדי H3 ישירה centromere. 9 מספר מחקרים הציעו תפקידים פונקציונאליים-translational פוסט שינוי (PTM) של CENP-A 12-16; עם זאת, המנגנונים המולקולריים של PTMs אלה של-A CENP בגיוס כדי צנטרומר טרם הובהר. דיווחנו בעבר כי CUL4A-RBX1-COPS8 פעילות האנזים E3 נדרש CENP-A K124 ubiquitylation ולוקליזציה של CENP-א 'עד צנטרומר. 17

התגלית ואפיון של חלבונים קינטוכור הובילו לתובנה חדשה לגבי הפרדה כרומוזום. 18 יותר מ -100 רכיבים קינטוכור זוהו בתאים חוליות ידי גישות שונות. 19,20 תחתמעמדו של איך קינטוכור להרכיב ותפקוד מגיע גם מן האפיון של התפקודים התאיים של כל חלבוני centromere-קינטוכור ורשת החלבונים בתוך תאים. 19 להדמיה ישירה ושיטות הדמיה מתקדמת מיקרוסקופ פלואורסצנטי לספק רזולוציה מרשימה של רכיבים-קינטוכור centromere ולאפשר תצפית ישירה של רכיבים מולקולריים ייחודיים של צנטרומר ו קינטוכור. בנוסף, שיטות immunofluorescent העקיף (IIF) מכתים באמצעות נוגדנים ספציפיים הם קריטיים תצפיות אלה. עם זאת, למרות דיווחים רבים על פרוטוקולים IIF, כמה דנו בבעיות פרט חלבונים centromere-קינטוכור ספציפיים. 1-4 לפיכך, פיתוח ודיווח שיטות מכתים IIF וכן assay IIF כמותית לנתח באופן ספציפי כל חלבון centromere-קינטוכור חשוב מאוד. בשנת מכתים IIF, אחד צריך להמשיך עם הפרוטוקול המכתים כדי למנוע אובדן של החלבון של עניין אושאר התא. עם זאת, קיבעון הורס אתרים אנטיגני מדי פעם, ושילובי נוגדן-אנטיגן שונים לעבוד היטב עם מקבע אחד, אבל טוב מאוד עם אחר, 21 ובחירה מקבע תלויים במידה רבה על החלבון (ים) של עניין. לכן, שיטות מקבעים שונות הן קריטיות מכתים IIF של חלבונים-קינטוכור centromere.

הנה שיטות אופטימיזציה של immunofluorescent עקיף (IIF) מכתים ו assay להתייחס לוקליזציה של חלבונים centromere-קינטוכור אנדוגני, כולל CENP-A ודגל מתוייגים אקסוגניים חלבונים CENP-A, ו לכמת את החלבונים האלה בתאים אנושיים פותחו. ניתן ליישם שיטות אלה כדי הניתוח של חלבונים-קינטוכור centromere במינים אחרים.

Protocol

1. תרבות Transfection ניידות שים כוס כיסוי (22 מ"מ x 22 מ"מ) בצלחת קלקר 6 באר. מעיל לחלופין כוס כיסוי עם פולי- L- ליזין, 0.1% w / v, במים (ראה רשימה של חומרים / ציוד) כדי לשמור על התאים mitotic על הזכוכית המכסה ביצוע השלבים הבאים: הערה:…

Representative Results

ניתוח Immunofluorescence של CENP-A אנדוגני תומך בהשערה כי האנזים CUL4A-E3 נדרש עבור לוקליזציה של CENP-א 'עד צנטרומר המחקרים האחרונים שלנו הראו כי CUL4A-RBX1-COPS8 פעילות אנזים E3 נדרשה ubiquitylation של ליזין 124 (K124) על CENP-A ולוקליזציה של CENP-א 'עד צנטרומר. 17 בתחי?…

Discussion

בשנים האחרונות מחקרים רבים פתחו מבחני מיקרוסקופיה כמותיים שונים עבור תאים קבועים. 42 התקדמות בביולוגיה-קינטוכור centromere לעתים קרובות דורש הבנה של קינטוכור ספציפי הספציפי centromere או תפקודם של חלבונים אשר מרחבית-טמפורלית subcellular תקנה משקפת את הפונקציות המשתנות של חל…

Disclosures

The authors have nothing to disclose.

Acknowledgements

עבודה זו נתמכה על ידי GM68418 מענק NIH.

Materials

Lipofectamin 2000 Life Technologies/Invitrogen 11668 transfection reagent I
Lipofectamin RNAiMAX Life Technologies/Invitrogen 13778 transfection reagent II
Opti-MEM I Life Technologies/Invitrogen 31985 Reduced serum media, warm in 37 °C water bath before use
High-glucose DMEM (Dulbecco’s modified Eagle’s medium) Life Technologies/BioWhittaker 12-604 high-glucose DMEM, warm in 37 °C water bath before use
Fetal Bovine Serum, certified, heat inactivated, US origin Life Technologies/Gibco 10082 FBS (fetal bovine serum)
Poly-L-Lysine SOLUTION SIGMA-SLDRICH P 8920 Poly-L-Lysine, 0.1% w/v, in water
UltraPure Distilled Water Life Technologies/Invitrogen/Gibco 10977 Sterile tissue culture grade water 
Micro Cover glass (22 mm x 22 mm)  Surgipath 105 Cover glass (22 mm x 22 mm) 
6 Well Cell Culture Cluster Fisher/Corning Incorporated 07-200-83 6-well polystyrene plate 
Penicillin, Streptomycin; Liquid Fisher/Gibco 15-140 Penicillin-streptomycin
PAP PEN  Binding Site AD100.1 Hydrophobic barrier pen (for a water repellant barrier in immunofluorescent staining)
Paclitaxel (Taxol) SIGMA-SLDRICH T7402 Taxol for mitotic cell analysis
TN-16, microtubule inhibitor (TN16) Enzo Life Sciences BML-T120 TN16 for mitotic cell analysis
BSA (bovine serum albumin) SIGMA-SLDRICH A7906 Blocking reagent
Triton X-100 SIGMA-SLDRICH T8787 Detergent for permeabilization
Paraformaldehyde SIGMA-SLDRICH P6148 Fixation reagant
DAPI SIGMA-SLDRICH D9542 For nuclear staining
p-phenylenediamine SIGMA-SLDRICH P6001 For mounting medium
VWR Micro Slides, Frosted VWR International 48312-013 Micro slides 
Anti-CENP-A antibody Stressgen/Enzo Life Sciences KAM-CC006 Mouse monoclonal antibody; dilution ratio of 1:100 (IIF), 1:5000 (WB)
Anti-CENP-B antibody Novus Biologicals H00001059-B01P Mouse monoclonal antibody; dilution ratio of 1:200 (IIF, methanol/acetone fixation)-1:400 (IIF, paraformaldehyde fixation)
Anti-CENP-B antibody  abcam ab25734 Rabbit polyclonal antibody; dilution ratio of 1:200 (IIF, methanol/acetone fixation)-1:400 (IIF, paraformaldehyde fixation)
Anti-centromere antibody (ACA) Fitzgerald Industries International, Inc. 90C-CS1058 Human centromere antiserum; dilution ratio of 1:2000 (IIF)
Anti-CENP-H antibody Bethyl Laboratories BL1112 (A400-007A) Rabbit polyclonal antibody; dilution ratio of 1:200 (IIF)
Anti-CENP-H antibody BD 612142 Mouse monoclonal antibody; dilution ratio of 1:200 (IIF)
Anti-CENP-I antibody N/A, Dr. Katusmi Kitagawa N/A, Dr. Katusmi Kitagawa Rabbit polyclonal antibody; dilution ratio of 1:1000 (IIF); Niikura et al., Oncogene, 4133-4146 (2006)
Anti-KNL1 antibody Novus Biologicals NBP1-89223 Rabbit polyclonal antibody; dilution ratio of 1:100 (IIF)
Anti-Hec1 antibody Novus Biologicals / GeneTex NB 100-338 / GTX70268 Mouse monoclonal antibody; dilution ratio of 1:100 (IIF)
Anti-Hec1 antibody GeneTex GTX110735 Rabbit polyclonal antibody; dilution ratio of 1:100 (IIF)
Anti-Ska1 antibody abcam ab46826 Rabbit polyclonal antibody; dilution ratio of 1:100 (IIF)
Anti-Flag antibody SIGMA-ALDRICH F3165 Mouse monoclonal antibody; dilution ratio of 1:1000 (IIF), 1:5000 (WB)
Anti-Flag antibody SIGMA-ALDRICH F7425 Rabbit polyclonal antibody; dilution ratio of 1:1000 (IIF), 1:5000 (WB)
Anti-CUL4A antibody N/A, Dr. Pradip Raychaudhuri N/A, Dr. Pradip Raychaudhuri Rabbit polyclonal antibody; dilution ratio of 1:3000 (WB); Shiyanov et al., The Journal of biological chemistry, 35309-35312 (1999)
Anti-RBX1 antibody Cell Signaling 4397 Rabbit polyclonal antibody; dilution ratio of 1:2000 (WB)
Anti-GAPDH antibody Chemicon MAB374 Mouse monoclonal antibody; dilution ratio of 1:5000 (WB)
Alexa Fluor 488 Goat Anti-Mouse IgG Life Technologies/Invitrogen A11001 fluorophore-conjugated secondary antibody (Affinity-purified secondary antibody)
Alexa Fluor 594 Goat Anti-Mouse IgG Life Technologies/Invitrogen A11005 fluorophore-conjugated secondary antibody (Affinity-purified secondary antibody)
Alexa Fluor 488 Goat Anti-Rabbit IgG Life Technologies/Invitrogen A11008 fluorophore-conjugated secondary antibody (Affinity-purified secondary antibody)
Alexa Fluor 594 Goat Anti-Rabbit IgG Life Technologies/Invitrogen A11012 fluorophore-conjugated secondary antibody (Affinity-purified secondary antibody)
Non fat powdered milk (approved substitution for carnation powdered milk) Fisher Scientific NC9255871 (Reorder No. 190915; Lot# 90629) Skim milk
Leica DM IRE2 motorized fluorescence microscope  Leica motorized fluorescence microscope 
HCX PL APO 63x oil immersion lens Leica LEICA HCX PL APO NA 1.40 OIL PH 3 CS 63X oil immersion lens
HCX PL APO 100x oil immersion lens Leica LEICA HCX PL APO NA 1.40 OIL PHE 100X oil immersion lens
Leica EL6000 compact light source Leica External compact light source for fluorescent excitation
ORCA-R2 Digital CCD camera  Hamamatsu C10600-10B digital CCD camera 
Openlab version 5.5.2 Scientific Imaging Software  Perkin Elmer/Improvision For image observation, acquisition, quantification, and analysis
Velocity version 6.1.1 3D Image Analysis Software  Perkin Elmer/Improvision For image observation, acquisition, quantification, and analysis
Complete EDTA-free protease inhibitor cocktail Roche 11873580001/11836170001 Protease inhibitor cocktail tablets
PlusOne 2-D Quant Kit Amersham Biosciences 80-6483-56 Commercial protein assay reagent I for measurement of protein concentration (compatible with 2% SDS)
Bio-Rad Protein Assay Bio-Rad 500-0006 Commercial protein assay reagent II for measurement of protein concentration (compatible with 0.1% SDS)
Immobilon-FL EMD Millipore IPFL00010 PVDF membrane for transferring
IRDye 800CW Goat Anti-Mouse IgG LI-COR Biosciences 926-32210 IR fluorescent dye-conjugated secondary antibody (Affinity-purified secondary antibody); dilution ratio of 1:20000 (IIF)
IRDye 680 Goat Anti-Rabbit IgG LI-COR Biosciences 926-32221 IR fluorescent dye-conjugated secondary antibody (Affinity-purified secondary antibody); dilution ratio of 1:20000 (IIF)
Goat anti-Mouse IgG DyLight 549 Fisher Scientific PI35507 DyLight-conjugated secondary antibodyIR fluorescent dye-conjugated secondary antibody (Affinity-purified secondary antibody); dilution ratio of 1:20000 (IIF)
Goat anti-Rabbit DyLight 649 Fisher Scientific PI35565 DyLight-conjugated secondary antibodyIR fluorescent dye-conjugated secondary antibody (Affinity-purified secondary antibody); dilution ratio of 1:20000 (IIF)
Goat anti-mouse IgG-HRP Santa Cruz SC-2005 HRP-conjugated secondary antibodyDyLight-conjugated secondary antibodyIR fluorescent dye-conjugated secondary antibody (Affinity-purified secondary antibody); dilution ratio of 1:10000 (IIF)
Goat anti-rabbit IgG-HRP Santa Cruz SC-2004 HRP-conjugated secondary antibodyDyLight-conjugated secondary antibodyIR fluorescent dye-conjugated secondary antibody (Affinity-purified secondary antibody); dilution ratio of 1:10000 (IIF)
Openlab version 5.5.2. Scientific Imaging Software  Improvision/PerkinElmer Software A
Volocity version 6.3 3D Image Analysis Software (Volocity Acquisition) PerkinElmer Software B1
Volocity version 6.3 3D Image Analysis Software (Volocity Quantification) PerkinElmer Software B2
Branson SONIFIER 450 Sonicator
Branson Ultrasonics sonicator Microtip Step, Solid, Threaded 9.5 mm VWR Scientific Products Inc.  33995-325 Disruptor horn for sonication
Branson Ultrasonics sonicator Microtip Tapered 6.5 mm VWR Scientific Products Inc.  33996-185 Microtip for sonication
Odyssey CLx Infrared imaging System  LI-COR Biosciences Infrared imaging system for immunoblot detection
Image Studio Analysis Software Ver 4.0  LI-COR Biosciences Software C
Molecular Imager Versadoc MP4000 System  Bio-Rad Chemiluminescence imager for immunoblot detection
Quantity One 1-D analysis software  Bio-Rad Software D
SuperSignal West Femto Maximum Sensitivity Substrate Thermo 34095 Ultra-sensitive enhanced chemiluminescent (ECL) substrate

References

  1. DeLuca, J. G., et al. Hec1 and nuf2 are core components of the kinetochore outer plate essential for organizing microtubule attachment sites. Molecular biology of the cell. 16, 519-531 (2005).
  2. Earnshaw, W. C., Halligan, N., Cooke, C., Rothfield, N. The kinetochore is part of the metaphase chromosome scaffold. J Cell Biol. 98, 352-357 (1984).
  3. Hoffman, D. B., Pearson, C. G., Yen, T. J., Howell, B. J., Salmon, E. D. Microtubule-dependent changes in assembly of microtubule motor proteins and mitotic spindle checkpoint proteins at PtK1 kinetochores. Molecular biology of the cell. 12, 1995-2009 (2001).
  4. Regnier, V., et al. CENP-A is required for accurate chromosome segregation and sustained kinetochore association of BubR1. Mol Cell Biol. 25, 3967-3981 (2005).
  5. Bernad, R., Sanchez, P., Losada, A. Epigenetic specification of centromeres by CENP-A. Exp Cell Res. 315, 3233-3241 (2009).
  6. Black, B. E., Cleveland, D. W. Epigenetic centromere propagation and the nature of CENP-a nucleosomes. Cell. 144, 471-479 (2011).
  7. Warburton, P. E., et al. Immunolocalization of CENP-A suggests a distinct nucleosome structure at the inner kinetochore plate of active centromeres. Curr Biol. 7, 901-904 (1997).
  8. Karpen, G. H., Allshire, R. C. The case for epigenetic effects on centromere identity and function. Trends Genet. 13, 489-496 (1997).
  9. Black, B. E., et al. Structural determinants for generating centromeric chromatin. Nature. 430, 578-582 (2004).
  10. Black, B. E., et al. Centromere identity maintained by nucleosomes assembled with histone H3 containing the CENP-A targeting domain. Mol Cell. 25, 309-322 (2007).
  11. Fachinetti, D., et al. A two-step mechanism for epigenetic specification of centromere identity and function. Nat Cell Biol. 15, 1056-1066 (2013).
  12. Zeitlin, S. G., Shelby, R. D., Sullivan, K. F. CENP-A is phosphorylated by Aurora B kinase and plays an unexpected role in completion of cytokinesis. The Journal of cell biology. 155, 1147-1157 (2001).
  13. Zhang, X., Li, X., Marshall, J. B., Zhong, C. X., Dawe, R. K. Phosphoserines on maize CENTROMERIC HISTONE H3 and histone H3 demarcate the centromere and pericentromere during chromosome segregation. The Plant cell. 17, 572-583 (2005).
  14. Goutte-Gattat, D., et al. Phosphorylation of the CENP-A amino-terminus in mitotic centromeric chromatin is required for kinetochore function. Proc Natl Acad Sci U S A. 110, 8579-8584 (2013).
  15. Bailey, A. O., et al. Posttranslational modification of CENP-A influences the conformation of centromeric chromatin. Proc Natl Acad Sci U S A. 110, 11827-11832 (2013).
  16. Samel, A., Cuomo, A., Bonaldi, T., Ehrenhofer-Murray, A. E. Methylation of CenH3 arginine 37 regulates kinetochore integrity and chromosome segregation. Proc Natl Acad Sci U S A. 109, 9029-9034 (2012).
  17. Niikura, Y., et al. CENP-A K124 Ubiquitylation Is Required for CENP-A Deposition at the Centromere. Dev Cell. , (2015).
  18. Chan, G. K., Liu, S. T., Yen, T. J. Kinetochore structure and function. Trends in cell biology. 15, 589-598 (2005).
  19. Hori, T., Okada, M., Maenaka, K., Fukagawa, T. CENP-O class proteins form a stable complex and are required for proper kinetochore function. Molecular biology of the cell. 19, 843-854 (2008).
  20. Fukagawa, T., Earnshaw, W. C. The centromere: chromatin foundation for the kinetochore machinery. Developmental cell. 30, 496-508 (2014).
  21. Kedersha, N., Grainger, D. . The Proteintech Blog.Proteintech. , (2012).
  22. Clontech Laboratories, Inc. . HeLa Tet-Off Advanced Cell Line. , (2012).
  23. Meraldi, P., Sorger, P. K. A dual role for Bub1 in the spindle checkpoint and chromosome congression. EMBO J. 24, 1621-1633 (2005).
  24. Niikura, Y., et al. 17-AAG, an Hsp90 inhibitor, causes kinetochore defects: a novel mechanism by which 17-AAG inhibits cell proliferation. Oncogene. 25, 4133-4146 (2006).
  25. Yang, Z., et al. Silencing mitosin induces misaligned chromosomes, premature chromosome decondensation before anaphase onset, and mitotic cell death. Mol Cell Biol. 25, 4062-4074 (2005).
  26. Wang, H., et al. Histone H3 and H4 ubiquitylation by the CUL4-DDB-ROC1 ubiquitin ligase facilitates cellular response to DNA damage. Mol Cell. 22, 383-394 (2006).
  27. Lamb, J. R., Tugendreich, S., Hieter, P. Tetratrico peptide repeat interactions: to TPR or not to TPR?. Trends Biochem Sci. 20, 257-259 (1995).
  28. Kitagawa, K., Skowyra, D., Elledge, S. J., Harper, J. W., Hieter, P. SGT1 encodes an essential component of the yeast kinetochore assembly pathway and a novel subunit of the SCF ubiquitin ligase complex. Mol Cell. 4, 21-33 (1999).
  29. Niikura, Y., Dixit, A., Scott, R., Perkins, G., Kitagawa, K. BUB1 mediation of caspase-independent mitotic death determines cell fate. J Cell Biol. 178, 283-296 (2007).
  30. Niikura, Y., Kitagawa, K. Identification of a novel splice variant: human SGT1B (SUGT1B). DNA Seq. 14, 436-441 (2003).
  31. Niikura, Y., Ogi, H., Kikuchi, K., Kitagawa, K. BUB3 that dissociates from BUB1 activates caspase-independent mitotic death (CIMD). Cell Death Differ. 17, 1011-1024 (2010).
  32. Ando, S., Yang, H., Nozaki, N., Okazaki, T., Yoda, K. CENP-A, -B, and -C chromatin complex that contains the I-type alpha-satellite array constitutes the prekinetochore in HeLa cells. Mol Cell Biol. 22, 2229-2241 (2002).
  33. Izuta, H., et al. Comprehensive analysis of the ICEN (Interphase Centromere Complex) components enriched in the CENP-A chromatin of human cells. Genes to cells : devoted to molecular & cellular mechanisms. 11, 673-684 (2006).
  34. Obuse, C., et al. Proteomics analysis of the centromere complex from HeLa interphase cells: UV-damaged DNA binding protein 1 (DDB-1) is a component of the CEN-complex, while BMI-1 is transiently co-localized with the centromeric region in interphase. Genes Cells. 9, 105-120 (2004).
  35. Merlet, J., Burger, J., Gomes, J. E., Pintard, L. Regulation of cullin-RING E3 ubiquitin-ligases by neddylation and dimerization. Cell Mol Life Sci. 66, 1924-1938 (2009).
  36. Bennett, E. J., Rush, J., Gygi, S. P., Harper, J. W. Dynamics of cullin-RING ubiquitin ligase network revealed by systematic quantitative proteomics. Cell. 143, 951-965 (2010).
  37. Antonelli, A., et al. Efficient inhibition of macrophage TNF-alpha production upon targeted delivery of K48R ubiquitin. Br J Haematol. 104, 475-481 (1999).
  38. Codomo, C. A., Furuyama, T., Henikoff, S. CENP-A octamers do not confer a reduction in nucleosome height by AFM. Nat Struct Mol Biol. 21, 4-5 (2014).
  39. Thrower, J. S., Hoffman, L., Rechsteiner, M., Pickart, C. M. Recognition of the polyubiquitin proteolytic signal. The EMBO journal. 19, 94-102 (2000).
  40. Yoda, K., et al. Human centromere protein A (CENP-A) can replace histone H3 in nucleosome reconstitution in vitro. Proc Natl Acad Sci U S A. 97, 7266-7271 (2000).
  41. Shelby, R. D., Vafa, O., Sullivan, K. F. Assembly of CENP-A into centromeric chromatin requires a cooperative array of nucleosomal DNA contact sites. J Cell Biol. 136, 501-513 (1997).
  42. Majumder, S., Fisk, H. A. Quantitative immunofluorescence assay to measure the variation in protein levels at centrosomes. J Vis Exp. , (2014).
  43. Masumoto, H., Masukata, H., Muro, Y., Nozaki, N., Okazaki, T. A human centromere antigen (CENP-B) interacts with a short specific sequence in alphoid DNA, a human centromeric satellite. J Cell Biol. 109, 1963-1973 (1989).
  44. Yoda, K., Kitagawa, K., Masumoto, H., Muro, Y., Okazaki, T. A human centromere protein, CENP-B, has a DNA binding domain containing four potential alpha helices at the NH2 terminus, which is separable from dimerizing activity. J Cell Biol. 119, 1413-1427 (1992).
  45. Sugata, N., et al. Human CENP-H multimers colocalize with CENP-A and CENP-C at active centromere–kinetochore complexes. Hum Mol Genet. 9, 2919-2926 (2000).
  46. Earnshaw, W. C., Ratrie, H., Stetten, G. Visualization of centromere proteins CENP-B and CENP-C on a stable dicentric chromosome in cytological spreads. Chromosoma. 98, 1-12 (1989).
  47. Goshima, G., Kiyomitsu, T., Yoda, K., Yanagida, M. Human centromere chromatin protein hMis12, essential for equal segregation, is independent of CENP-A loading pathway. J Cell Biol. 160, 25-39 (2003).
  48. Liu, S. T., Rattner, J. B., Jablonski, S. A., Yen, T. J. Mapping the assembly pathways that specify formation of the trilaminar kinetochore plates in human cells. J Cell Biol. 175, 41-53 (2006).
  49. Gascoigne, K. E., Cheeseman, I. M. T time for point centromeres. Nat Cell Biol. 14, 559-561 (2012).
  50. Gascoigne, K. E., et al. Induced ectopic kinetochore assembly bypasses the requirement for CENP-A nucleosomes. Cell. 145, 410-422 (2011).
  51. Nishino, T., et al. CENP-T provides a structural platform for outer kinetochore assembly. EMBO J. 32, 424-436 (2013).
  52. Malvezzi, F., et al. A structural basis for kinetochore recruitment of the Ndc80 complex via two distinct centromere receptors. EMBO J. 32, 409-423 (2013).
  53. Schleiffer, A., et al. CENP-T proteins are conserved centromere receptors of the Ndc80 complex. Nat Cell Biol. 14, 604-613 (2012).
  54. Rago, F., Gascoigne, K. E., Cheeseman, I. M. Distinct organization and regulation of the outer kinetochore KMN network downstream of CENP-C and CENP-T. Curr Biol. 25, 671-677 (2015).
  55. Nishino, T., et al. CENP-T-W-S-X forms a unique centromeric chromatin structure with a histone-like fold. Cell. 148, 487-501 (2012).
  56. Bodor, D. L., et al. The quantitative architecture of centromeric chromatin. Elife. 3, e02137 (2014).
  57. Oliver, C., Rapely, R., Walker, J. M. Ch 58. Molecular Biomethods Handbook. , 1063-1079 (2008).
  58. Terasima, T., Tolmach, L. J. Changes in x-ray sensitivity of HeLa cells during the division cycle. Nature. 190, 1210-1211 (1961).
  59. Levenson, G. B. R., Vo-Dinh, T. u. a. n. Ch 8. Biomedical Photonics Handbook. , 8-19 (2003).
  60. Sanderson, J. . Fluorescence bleed-though. , (2011).
check_url/kr/53732?article_type=t

Play Video

Cite This Article
Niikura, Y., Kitagawa, K. Immunofluorescence Analysis of Endogenous and Exogenous Centromere-kinetochore Proteins. J. Vis. Exp. (109), e53732, doi:10.3791/53732 (2016).

View Video