Summary

En Filter-baserede Surface Enhanced Raman Spektroskopiske Assay til Rapid detektering af kemiske forureninger

Published: February 19, 2016
doi:

Summary

En fremgangsmåde til fremstilling og udførelse af filterbaseret overflade forstærket Raman spektroskopi (SERS) assay til detektering af kemiske forureninger (dvs. pesticid ferbam og antibiotisk ampicillin) præsenteres.

Abstract

We demonstrate a method to fabricate highly sensitive surface-enhanced Raman spectroscopic (SERS) substrates using a filter syringe system that can be applied to the detection of various chemical contaminants. Silver nanoparticles (Ag NPs) are synthesized via reduction of silver nitrate by sodium citrate. Then the NPs are aggregated by sodium chloride to form nanoclusters that could be trapped in the pores of the filter membrane. A syringe is connected to the filter holder, with a filter membrane inside. By loading the nanoclusters into the syringe and passing through the membrane, the liquid goes through the membrane but not the nanoclusters, forming a SERS-active membrane. When testing the analyte, the liquid sample is loaded into the syringe and flowed through the Ag NPs coated membrane. The analyte binds and concentrates on the Ag NPs coated membrane. Then the membrane is detached from the filter holder, air dried and measured by a Raman instrument. Here we present the study of the volume effect of Ag NPs and sample on the detection sensitivity as well as the detection of 10 ppb ferbam and 1 ppm ampicillin using the developed assay.

Introduction

Surface Raman spektroskopi (SERS) er en teknik, der kombinerer Raman spektroskopi med nanoteknologi. Intensiteten af Raman-spredning af analytter på ædle metalliske nano-overflader er øget væsentligt ved lokaliserede overfladeplasmonresonans. 1 Sølv nanopartikler (Ag NPS) er langt de mest anvendte SERS substrater på grund af sin høje enhancement evne. 2 Indtil nu er der blevet udviklet forskellige syntetiske metoder til Ag NP'er. 3-6 Ag NP'er kan anvendes alene som effektive SERS-substrater, eller kombineret med andre materialer og strukturer, der kan forbedre dets følsomhed og / eller funktionalitet. 7-11

SERS teknikker har vist stor evne til påvisning af forskellige spormængde forurenende stoffer i fødevarer og miljøprøver 12 Traditionelt er der to almindelige måder til fremstilling af et SERS prøve:.. Opløsningsbaserede og substrat-baserede metoder 13 løsning baseret method bruger NP kolloider at blande med prøver. Derefter NP-analytkomplekset opsamles ved hjælp af centrifugering, og aflejres på en fast bærer til Raman måling efter tørring. Underlaget-baserede metode er normalt anvendes ved at deponere flere mikroliter flydende prøve på præfabrikerede fast underlag. 14 Men ingen af disse to metoder er effektive og anvendelige for en stor mængde af prøvevolumen. Adskillige modifikationer af SERS analyser overvandt de mængdemæssige begrænsninger, såsom integrationen af et filtersystem 15-21 eller inkorporering af en mikrovæskeanordning. 21-24 De ændrede SERS analyser har vist stor forbedring i følsomhed og gennemførlighed til overvågning af kemiske forureninger i store vandprøver.

Her demonstrerer vi detaljeret protokol af fabrikation og anvendelse af en sprøjte filter baseret SERS metode til at påvise spor mængde pesticider ferbam og antibiotisk ampicillin.

Protocol

1. Sølv Nanopartikel Synthesis 15 Opløs 18 mg sølvnitrat i 100 ml ultrarent vand (18,2 ΩU) og vortex i 5 sek. Opløs 27 mg natriumcitratdihydrat i 1 ml vand og vortex i 5 sek. Overføre alle den fremstillede sølvnitratopløsning til en konisk kolbe indeholdende en omrører og sætte kolben på en magnetisk varmeplade. Kolben opvarmes under kraftig omrøring med en omrøringshastighed på 700 rpm ved ~ 350 ° C (indstilling temperatur på pladen). Når kogningen, s…

Representative Results

De vigtigste trin i dette forsøg er vist i det skematiske diagram (figur 1). Figur 2 vist betydningen at bruge den optimerede mængde AgNPs i membrancoatingen for at nå den maksimeret følsomhed. 1 ml Ag NP'er tilvejebringer det stærkeste signal ved brug ferbam, sammenlignet med 0,5 ml (utilstrækkelig coating) eller 2 ml (for meget coating). Vi var i stand til at detektere ferbam ved 1…

Discussion

En af de kritiske trin i denne protokol er Ag NP syntese, når ensartede Ag nationale parlamenter er nøglen til ensartede resultater. Opvarmningstiden og koncentrationerne af udgangsstoffer skal styres præcist. Den gennemsnitlige størrelse af dette AgNPs præparat er 80 nm, hvilket blev målt ved Zetasizer (data ikke vist). En anden afgørende skridt er saltet sammenlægning, hvor saltkoncentrationen og sammenlægning tid skal styres præcist. Desuden er valget af membranen er også kritisk, da membranen med en mindr…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This material is based upon work supported by the U.S. Department of Homeland Security under Grant Award Number 2010-ST-061-FD0001 through a grant awarded by the National Center for Food Protection and Defense at the University of Minnesota. Disclaimer: The views and conclusions contained in this document are those of the authors and should not be interpreted as necessarily representing the official policies, either expressed or implied, of the U.S. Department of Homeland Security or the National Center for Food Protection and Defense.

Materials

Ampicillin Fisher Scientific BP1760-5 N/A
Ferbam Chem Service N-11970-250MG 98+%
Silver nitrate Sigma Aldrich 209139 99.0+%
Sodium citrate dehydrate Sigma Aldrich W302600 99+%
Sodium chloride Sigma Aldrich S7653 99.5+%
EMD Millipore Durapore PVDF Membrane Filters Fisher Scientific VVLP01300 0.10 µm Pore Size, hydrophilic
Polycarbonate Filter Holders Cole-Parmer EW-29550-40 13 mm diameter
Analog Vortex Mixer Fisher Scientific 02-215-365 N/A
Nutating Mixers Fisher Scientific 05-450-213 N/A
DXR Raman spectroscope Thermo Scientific IQLAADGABFFAHCMAPB Laser power: 1 mW Exposure time: 5 s

References

  1. Albrecht, M. G., Creighton, J. A. Anomalously intense Raman spectra of pyridine at a silver electrode. J. Am. Chem. Soc. 99 (15), 5215-5217 (1977).
  2. Schatz, G. C., Young, M. A., Van Duyne, R. P. . Electromagnetic mechanism of SERS. Surface-enhanced Raman scattering. , 19-45 (2006).
  3. Matijevic, E. Preparation and properties of uniform size colloids. Chem. Mater. 5 (4), 412-426 (1993).
  4. Nickel, U., zu Castell, A., Pöppl, K., Schneider, S. A silver colloid produced by reduction with hydrazine as support for highly sensitive surface-enhanced Raman spectroscopy. Langmuir. 16 (23), 9087-9091 (2000).
  5. Khanna, P. K., Subbarao, V. V. V. S. Nanosized silver powder via reduction of silver nitrate by sodium formaldehydesulfoxylate in acidic pH medium. Mater. Lett. 57 (15), 2242-2245 (2003).
  6. Henglein, A., Giersig, M. Formation of colloidal silver nanoparticles: capping action of citrate. J. Phys. Chem. B. 103 (44), 9533-9539 (1999).
  7. Sun, X., Li, Y. Colloidal carbon spheres and their core/shell structures with noble-metal nanoparticles. Angew. Chem. Int. Edit. 43 (5), 597-601 (2004).
  8. Lu, L., et al. Seed-mediated growth of large, monodisperse core-shell gold-silver nanoparticles with Ag-like optical properties. Chem. Commun. (2), 144-145 (2002).
  9. Aslan, K., Wu, M., Lakowicz, J. R., Geddes, C. D. Fluorescent core-shell Ag@SiO2 nanocomposites for metal-enhanced fluorescence and single nanoparticle sensing platforms. J. Am. Chem. Soc. 129 (6), 1524-1525 (2007).
  10. Lu, Y., Yin, Y., Li, Z. Y., Xia, Y. Synthesis and self-assembly of Au@ SiO2 core-shell colloids. Nano. Lett. 2 (7), 785-788 (2002).
  11. Link, S., Wang, Z. L., El-Sayed, M. A. Alloy formation of gold-silver nanoparticles and the dependence of the plasmon absorption on their composition. J. Phys. Chem. B. 103 (18), 3529-3533 (1999).
  12. He, L., et al. Rapid Detection of Ricin in Milk Using Immunomagnetic Separation Combined with Surface Enhanced Raman Spectroscopy. J. Food. Sci. 76 (5), N49-N53 (2011).
  13. Zheng, J., He, L. Surface-Enhanced Raman Spectroscopy for the Chemical Analysis of Food. Compr. Rev. Food. Sci. F. 13 (3), 317-328 (2014).
  14. He, L., Haynes, C. L., Diez-Gonzalez, F., Labuza, T. P. Rapid detection of a foreign protein in milk using IMS-SERS. J. Raman. Spectrosc. 42 (6), 1428-1434 (2011).
  15. Wei, W. Y., White, I. M. A simple filter-based approach to surface enhanced Raman spectroscopy for trace chemical detection. Analyst. 137 (5), 1168-1173 (2012).
  16. Cheng, M. L., Tsai, B. C., Yang, J. Silver nanoparticle-treated filter paper as a highly sensitive surface-enhanced Raman scattering (SERS) substrate for detection of tyrosine in aqueous solution. Anal. Chim. Acta. 708 (1), 89-96 (2011).
  17. Fierro-Mercado, P. M., Hernández-Rivera, S. P. Highly sensitive filter paper substrate for SERS trace explosives detection. Int. J. Spectrosc. 2012, 716527 (2012).
  18. Tran, C. D. Subnanogram detection of dyes on filter paper by surface-enhanced Raman scattering spectrometry. Anal. Chem. 56 (4), 824-826 (1984).
  19. Wu, D., Fang, Y. The adsorption behavior of p-hydroxybenzoic acid on a silver-coated filter paper by surface enhanced Raman scattering. J. Colloid Interface Sci. 265 (2), 234-238 (2003).
  20. Wigginton, K. R., Vikesland, P. J. Gold-coated polycarbonate membrane filter for pathogen concentration and SERS-based detection. Analyst. 135 (6), 1320-1326 (2010).
  21. Berthod, A., Laserna, J. J., Winefordner, J. D. Analysis by surface enhanced Raman spectroscopy on silver hydrosols and silver coated filter papers. J Pharm Biomed Anal. 6 (6), 599-608 (1988).
  22. Ackermann, K. R., Henkel, T., Popp, J. Quantitative Online Detection of Low-Concentrated Drugs via a SERS Microfluidic System. ChemPhysChem. 8 (18), 2665-2670 (2007).
  23. Walter, A., März, A., Schumacher, W., Rösch, P., Popp, J. Towards a fast, high specific and reliable discrimination of bacteria on strain level by means of SERS in a microfluidic device. Lab. Chip. 11 (6), 1013-1021 (2011).
  24. Lee, S., et al. Fast and sensitive trace analysis of malachite green using a surface-enhanced Raman microfluidic sensor. Anal. Chim. Acta. 590 (2), 139-144 (2007).
  25. Guo, H., et al. Analysis of Silver Nanoparticles in Antimicrobial Products Using Surface-Enhanced Raman Spectroscopy (SERS). Environ. Sci. Technol. 49 (7), 4317-4324 (2015).
  26. Narayanan, V. A., Begun, G. M., Stokes, D. L., Sutherland, W. S., Vo-Dinh, T. Normal Raman and surface enhanced Raman scattering (SERS) spectra of some fungicides and related chemical compounds. J. Raman. Spectrosc. 23 (5), 281-286 (1992).
  27. Kang, J. S., Hwang, S. Y., Lee, C. J., Lee, M. S. SERS of dithiocarbamate pesticides adsorbed on silver surface; thiram. Bull. Korean. Chem. Soc. 23 (11), 1604-1610 (2002).
  28. Li, Y. T., et al. Rapid and sensitive in-situ detection of polar antibiotics in water using a disposable Ag-graphene sensor based on electrophoretic preconcentration and surface-enhanced Raman spectroscopy. Biosens. Bioelectron. 43, 94-100 (2013).
  29. Clarke, S. J., Littleford, R. E., Smith, W. E., Goodacre, R. Rapid monitoring of antibiotics using Raman and surface enhanced Raman spectroscopy. Analyst. 130 (7), 1019-1026 (2005).
  30. Zheng, J., Pang, S., Labuza, T. P., He, L. Semi-quantification of surface-enhanced Raman scattering using a handheld Raman spectrometer: a feasibility study. Analyst. 138 (23), 7075-7078 (2013).
  31. Zheng, J., Pang, S., Labuza, T. P., He, L. Evaluation of surface-enhanced Raman scattering detection using a handheld and a bench-top Raman spectrometer: A comparative study. Talanta. 129, 79-85 (2014).
check_url/kr/53791?article_type=t

Play Video

Cite This Article
Gao, S., Glasser, J., He, L. A Filter-based Surface Enhanced Raman Spectroscopic Assay for Rapid Detection of Chemical Contaminants. J. Vis. Exp. (108), e53791, doi:10.3791/53791 (2016).

View Video