Summary

光感受器细胞光谱灵敏度在从昆虫模型决定<em>在体内</em>细胞内记录

Published: February 26, 2016
doi:

Summary

细胞内记录的电生理学技术证明和用于确定在一个蝴蝶的复眼单一的感光细胞的光谱灵敏度。

Abstract

细胞内记录是用于确定如何单个小区可以对给定的刺激响应的强大技术。在视觉研究,细胞内记录在历史上一直用于单个感光细胞的敏感性研究到至今仍在使用的不同的光刺激的常用技术。然而,仍详细方法在文献中为希望的眼睛来复制细胞内记录实验研究缺乏。在这里,我们目前的昆虫作为检查眼睛的生理更普遍的模式。昆虫感光细胞位于眼睛的表面附近,因此容易达到,而且许多涉及视力的机制跨越动物门保守的。我们描述了一个蝴蝶的眼睛在体内的感光细胞内录制的基本步骤,使得用这种方法更容易被研究人员在电子很少以往的经验的目标lectrophysiology。我们需要引入,如何准备活蝴蝶记录,如何插入玻璃微电极到一个单元格,最后录制过程本身的基本设备。我们还说明原始响应数据的基本分析,用于确定个体细胞类型的光谱灵敏度。虽然我们的协议的重点是确定的光谱的灵敏度,其他刺激( 例如 ,偏振光),并且该方法的变型也适用于这种设置。

Introduction

细胞如神经元的电性能通过测量穿过细胞膜的离子流在电压或电流的变化观察到的。各种电生理技术已经开发了用于测量细胞的生物电活动。在动物的眼睛中发现的神经元接触,而其电路是较少复杂比在大脑中,使这些细胞的良好候选为电生理研究。在眼电生理常见的应用包括电图(ERG)1,2和微电极细胞内记录。 ERG涉及将一个电极或动物的眼,施加光刺激,并测量作为所有附近小区3-6的响应的总和在电压的变化。如果一个人在描述个人感光细胞的光谱灵敏度特别感兴趣,经常多种细胞类型同时在不同的优势,一个给定的刺激作出反应;因此可能难以确定来自ERG数据特定细胞类型的敏感性,特别是如果有几种不同类型的眼睛的光谱相似感光细胞。一个可能的解决办法是建立转基因果蝇与在大多数R1-6细胞的眼睛表示有兴趣感光(视蛋白)基因,然后执行尔格7。该方法的潜在缺点包括不向感光体蛋白8的低表达,并用于转基因动物的产生和筛选时间长帧。与种类较少光谱不同的光感受器的眼睛,用彩色滤光片的眼睛的适应可与降低一些细胞类型的ERG的贡献,从而使光谱灵敏度最大值9的估计帮助。

细胞内记录是另一种技术,其中一个精细电极刺入细胞和施加的刺激。电极仅记录逐张idual细胞的反应,使得从记录和分析多个单个细胞可以产生生理不同的细胞类型10-14的具体的灵敏度。虽然我们的协议侧重于光谱灵敏度的分析,细胞内的尖锐的电极记录的基本原理是修改其他应用程序。使用不同的制备试样,例如,和使用锋利的石英电极,可以在大脑从视叶或其他区域更深记录,这取决于所提出的问题。例如,从个人感光细胞15的响应时间,在视神经细胞活性裂片16(椎板,髓质或小叶17),18或其他神经节19还可以记录有类似的技术,或颜色刺激可以与偏振20来代替-22或运动刺激23,24。

光转导,该方法通过使光能量被吸收并转换成电化学信号,是共同的几乎所有现今动物门25一个古老的性状。在感光细胞发现,负责发起可视光转视色素视紫红质是。在所有动物中视紫红质是由视蛋白的蛋白质,所述7次跨膜G蛋白偶联受体家族的成员,和相关联的发色团是从视网膜或类似的分子26,27衍生的。视蛋白的氨基酸序列和发色团结构影响视紫红质,以不同波长的光的吸光度。当光子被发色团吸收的视紫红质被激活,启动了在最终导致膜结合离子通道28的开口的细胞的G蛋白级联。不像大多数神经元,感光细胞经历,可以作为一个相对变化响应的幅度不断变化的光刺激来衡量分级的潜在变化。通常,一个给定的感光器类型表明只有一个视蛋白基因(虽然存在例外8,10,29-31)。复杂的色觉,在许多脊椎动物和节肢动物发现的那种,与感光细胞的数百或数千各表达一种或偶尔多个视紫红质类型的复合眼实现。可视信息通过经由复杂的下游神经信号在眼睛和大脑比较在感光镶嵌反应,导致完全的颜色和运动图像的感知捕获。

测定感光细胞通过细胞内记录不同波长的光的原始应答后,就可以计算出其光谱感光度。此计算是基于Univariance的原理,其中指出,感光细胞的反应是依赖于它吸收的光子的数量,但不能在它吸收32的光子的特定性质。任何光子是ABSO通过视紫红质rbed会诱发同一种反应。在实践中,这意味着,一个细胞的原始响应振幅由于或者增加光强度(更多的光子吸收)增加, 或者在波长朝其峰值灵敏度的移位(视紫质的较高的概率吸收该波长)。我们使在公知的强度和相同波长的响应在不同波长和相同的强度,但未知相对感光度与细胞反应利用这一原理。细胞类型通常由波长在哪些其灵敏度峰识别。

在这里,我们显示了细胞内记录和蝴蝶的眼睛光感受器的光谱灵敏度分析的一种方法,其重点是使这种方法更广泛的研究团体更容易获得。虽然细胞内记录在文献中仍然普遍,尤其是相对于昆虫的色觉,我们已经发现塔的材料和方法吨描述通常太短,以允许该技术的再现。我们目前在视频格式的方法,允许其更容易复制的目的。我们还使用容易获得和负担得起的设备描述技术。我们解决经常不报共同注意事项,优化一个新的和复杂的技术,当它慢下来研究。

Protocol

所有动物的人道待遇越好。昆虫被运来自哥斯达黎加昆虫供应,哥斯达黎加蛹。 1. 袖蝶属蛹护理杭所有蛹用昆虫针湿盒间隔2-3厘米。 羽化后,让翅膀晾干然后继续蝴蝶存活至少1天在湿盒和记录每天前喂稀释的蜂蜜水溶液。 加水稀释蜂蜜体积约20%的蜂蜜水溶液,倒入浅培养皿。 把个人的蝴蝶培养皿中,一个接一个。在触摸与它们的前跗溶液,蝴蝶将自动?…

Representative Results

用于记录设置的许多元素,书面说明不提供足够的细节。 图1是涉及完整记录设置的组件的示意图。在图2中,光谱被绘制为白光和各干涉滤光器,得到为什么需要校正因子的感觉和所需要的计算这个校正。 图3显示了照片,并且用于这些的万向臂的图实验。 图4是示出在记录阶段和显微操作的合成图像。 图5示出了在实验蝴蝶的…

Discussion

细胞内记录可以是一个很难掌握的技术,由于涉及很多技术步骤。对于成功的试验几个要点必须加以考虑。首先,对具有在其上进行的实验的合适的振动隔离表是重要的。许多研究人员使用的空气的表,从而彻底桌面从基座分离,得到优异的振动隔离。我们设置包括在上面沙箱,在其中放置在显微/电极架/样品台设备厚厚的大理石桌子。这是一种有效的和更经济的替代空气表,特别是如果进入内?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢已故的鲁迪·林堡制造的万向臂周长,金佰利贾米森,马修麦克亨利和拉朱Metherate借给我们设备和Almut Kelber和有川太郎,以资鼓励。这项工作是由美国国家科学基金会(NSF)研究生研究奖学金给KJM和美国国家科学基金会资助IOS-1257627亚行支持

Materials

Butterfly pupae Several local species available, need USDA permits for shipping. Carolina Bio Supply has several insect species that may be ordered within the U.S. without the need for additional permits
Large plastic cylinder Any chamber that remains humidified will work
Insect pins, size 2 BioQuip 1208B2
100% Desert Mesquite Honey Trader Joe's Any honey or sucrose solution will work
Xenon Arc Lamp Oriel Instruments 66003 Oriel is now a part of Newport Corporation
Universal Power Supply Oriel Instruments 68805 Oriel is now a part of Newport Corporation
Optical Track Oriel Instruments 11190 Oriel is now a part of Newport Corporation
Rail Carrier, Large (2x) Oriel Instruments 11641 Oriel is now a part of Newport Corporation
Rail Carrier, Small (4x) Oriel Instruments 11647 Oriel is now a part of Newport Corporation
Thread Adaptor, 8-32 Male to 1/4-20 Male, pack of 10 Newport Corporation TA-8Q20-10
Optical Mounting Post, 1.0 in., 0.5 in. Dia. Stainless, 8-32 & 1/4-20 (5x) Newport Corporation SP-1
No Slip Optical Post Holder, 2 in., 0.5 in. Diameter Posts, 1/4-20 (5x) Newport Corporation VPH-2
Fixed lens mount, 50.8 mm Newport Corporation LH-2
Fixed lens mount, 25.4 mm Newport Corporation LH-1
Condenser lens assembly Newport Corporation 60006
Convex silica lens, 50.8 mm Newport Corporation SPX055
Six Position Filter Wheel, x2 Newport Corporation FW1X6
Filter Wheel Mount Hub Newport Corporation FWM
Concave silica lens, 25.4 mm Newport Corporation SPC034
Collimator holder Newport Corporation 77612
Collimating beam probe Newport Corporation 77644
Ferrule Converter, SMA Termination to 11 mm Standard Ferrule Newport Corporation 77670 This adapter allows the fiber optic to fit into the collimator holder 
600 μm diameter UV-vis fiber obtic cable Oriel Instruments 78367 Oriel is now a part of Newport Corporation
Shutter with drive unit Uniblitz 100-2B
UV Fused Silica Metallic ND Filter, 0.1 OD Newport FRQ-ND01
UV Fused Silica Metallic ND Filter, 0.3 OD Newport FRQ-ND03
UV Fused Silica Metallic ND Filter, 0.5 OD Newport FRQ-ND05
UV Fused Silica Metallic ND Filter, 1.0 OD Newport FRQ-ND10
UV Fused Silica Metallic ND Filter, 2.0 OD Newport FRQ-ND30
UV Fused Silica Metallic ND Filter, 3.0 OD Newport FRQ-ND50
LS-1-Cal lamp Ocean Optics LS-1-Cal
Spectrometer Ocean Optics USB-2000
SpectraSuite Software Ocean Optics
Interference bandpass filter, 300 nm  Edmund Optics 67749
Interference bandpass filter, 310 nm  Edmund Optics 67752
Interference bandpass filter, 320 nm  Edmund Optics 67754
Interference bandpass filter, 330 nm  Edmund Optics 67756
Interference bandpass filter, 340 nm  Edmund Optics 65614
Interference bandpass filter, 350 nm  Edmund Optics 67757
Interference bandpass filter, 360 nm  Edmund Optics 67760
Interference bandpass filter, 370 nm  Edmund Optics 67761
Interference bandpass filter, 380 nm  Edmund Optics 67762
Interference bandpass filter, 390 nm  Edmund Optics 67763
Interference bandpass filter, 400 nm  Edmund Optics 65732
Interference bandpass filter, 410 nm  Edmund Optics 65619
Interference bandpass filter, 420 nm  Edmund Optics 65621
Interference bandpass filter, 430 nm  Edmund Optics 65622
Interference bandpass filter, 440 nm  Edmund Optics 67764
Interference bandpass filter, 450 nm  Edmund Optics 65625
Interference bandpass filter, 460 nm  Edmund Optics 67765
Interference bandpass filter, 470 nm  Edmund Optics 65629
Interference bandpass filter, 480 nm  Edmund Optics 65630
Interference bandpass filter, 492 nm  Edmund Optics 65633
Interference bandpass filter, 500 nm  Edmund Optics 65634
Interference bandpass filter, 510 nm  Edmund Optics 65637
Interference bandpass filter, 520 nm  Edmund Optics 65639
Interference bandpass filter, 532 nm  Edmund Optics 65640
Interference bandpass filter, 540 nm  Edmund Optics 65642
Interference bandpass filter, 550 nm  Edmund Optics 65644
Interference bandpass filter, 560 nm  Edmund Optics 67766
Interference bandpass filter, 570 nm  Edmund Optics 67767
Interference bandpass filter, 580 nm  Edmund Optics 65646
Interference bandpass filter, 589 nm  Edmund Optics 65647
Interference bandpass filter, 600 nm  Edmund Optics 65648
Interference bandpass filter, 610 nm  Edmund Optics 65649
Interference bandpass filter, 620 nm  Edmund Optics 65650
Interference bandpass filter, 632 nm  Edmund Optics 65651
Interference bandpass filter, 640 nm  Edmund Optics 65653
Interference bandpass filter, 650 nm  Edmund Optics 65655
Interference bandpass filter, 660 nm  Edmund Optics 67769
Interference bandpass filter, 671 nm  Edmund Optics 65657
Interference bandpass filter, 680 nm  Edmund Optics 67770
Interference bandpass filter, 690 nm  Edmund Optics 65659
Interference bandpass filter, 700 nm  Edmund Optics 67771
Faraday cage Any metal structure will work that can be grounded and that fits the experimental setup.
Stereomicroscope, 6x, 12x, 25x, 50x magnification Wild Heerbrugg Wild M5 Any Stereomicroscope will do
Microscope stand with swinging arm and heavy base McBain Instruments Any heavy base with arm will do
Cardan arm Custom built, See Figure 4
Fiber-lite high intensity illuminator Dolan-Jenner MI-150 For lighting specimen
Fiber-lite goose-neck light guide Dolan-Jenner EEG 2823 Any goose-neck light guide will do
Marble table
Raised wooden table Hole should be cut through this table so that the sandbox can rest on the marble table underneath
Wooden box filled with sand custom built, any box with sand
Manipulator Carl Zeiss – Jena
Electrode holder
Specimen stage
Alligator clip wires for grounding
Insulated copper wire
Silver wire, 0.125 mm diameter World Precision Instruments AGW0510
BNC cables
Preamplifier with headstage Dagan Corporation IX2-700
Humbug Noise reducer Quest Scientific Humbug
Oscilloscope, 30MHz, 2CH, Dual Trace, Alt-triggering, without probe EZ Digital os-5030
BNC T-adapter
Powerlab hardware 2/20 ADI instruments ML820
Labchart software ADI instruments Chart 5
10 MHz Pulse Generator BK Precision 4030
Glass pipette puller Sutter Instruments P-87
Borosillicate glass capillaries with filament World Precision Instruments 1B120F-4
Potassium chloride, 3 M
Slotted plastic tube
Low melting temperature wax
Soldering Iron Weller
Platform with ball-and-socket magnetic base Hama photo and video
Double edge carbon steel, breakable razor blade Electron Microscopy Sciences 72004
Vaseline
Microsoft Excel Microsoft

References

  1. Beckmann, H., et al. Spectral sensitivity in Onychophora (velvet worms) revealed by electroretinograms, phototactic behaviour and opsin gene expression. J. Exp. Biol. 218, 915-922 (2015).
  2. Leboulle, G., et al. Characterisation of the RNA interference response against the long-wavelength receptor of the honeybee. Insect Biochem. Mol. Biol. 43, 959-969 (2013).
  3. Martinez-Harms, J., et al. Evidence of red sensitive photoreceptors in Pygopleurus israelitus Coleoptera) and its implications for beetle pollination in the southeast Mediterranean. J. Comp. Physiol. A. 198, 451-463 (2012).
  4. Knox, B. E., et al. Heterologous expression of Limulus rhodopsin. J. Biol. Chem. 278, 40493-40502 (2003).
  5. Salcedo, E., Zheng, L., Phistry, M., Bagg, E. E., Britt, S. G. Molecular basis for ultraviolet vision in invertebrates. J. Neurosci. 23, 10873-10878 (2003).
  6. Salcedo, E., et al. Blue- and green-absorbing visual pigments of Drosophila: ectopic expression and physiological characterization of the R8 photoreceptor cell-specific Rh5 and Rh6 rhodopsins. J. Neurosci. 19, 10716-10726 (1999).
  7. Vilinsky, I., Johnson, K. G. Electroretinograms in Drosophila: robust and genetically accessible electrophysiological system for the undergraduate laboratory. J. Undergrad. Neurosci. Educ. 11, 149-157 (2012).
  8. Hu, X., Leming, M. T., Whaley, M. A., O’Tousa, J. E. Rhodopsin coexpression in UV photoreceptors of Aedes aegypti Anopheles gambiae mosquitoes. J. Exp. Biol. 217, 1003-1008 (2014).
  9. Telles, F. J., et al. Out of the blue: the spectral sensitivity of hummingbird hawkmoths. J. Comp. Physiol. A. 200, 537-546 (2014).
  10. Arikawa, K., Mizuno, S., Kinoshita, M., Stavenga, D. G. Coexpression of two visual pigments in a photoreceptor causes an abnormally broad spectral sensitivity in the eye of the butterfly Papilio xuthus. J. Neurosci. 23, 4527-4532 (2003).
  11. Arikawa, K., et al. An ultraviolet absorbing pigment causes a narrow-band violet receptor and a single-peaked green receptor in the eye of the butterfly Papilio. Vision Res. 39, 1-8 (1999).
  12. Cronin, T. W., Jarvilehto, M., Weckstrom, M., Lall, A. B. Tuning of photoreceptor spectral sensitivity in fireflies (Coleoptera: Lampyridae). J. Comp. Physiol. A. 186, 1-12 (2000).
  13. Skorupski, P., Doring, T. F., Chittka, L. Photoreceptor spectral sensitivity in island and mainland populations of the bumblebee, Bombus terrestris. J. Comp. Physiol. A. 193, 485-494 (2007).
  14. Stalleicken, J., Labhart, T., Mouritsen, H. Physiological characterization of the compound eye in monarch butterflies with focus on the dorsal rim area. J. Comp. Physiol. A. 192, 321-331 (2006).
  15. Skorupski, P., Chittka, L. Photoreceptor processing speed and input resistance changes during light adaptation correlate with spectral class in the bumblebee, Bombus impatiens. PLoS One. 6, 25989 (2011).
  16. Yang, E. -. C., Osorio, D. Spectral sensitivities of photoreceptors and lamina monopolar cells in the dragonfly, Hemicordulia tau. J. Comp. Physiol. A. 169, (1991).
  17. Yang, E. C., Lin, H. C., Hung, Y. S. Patterns of chromatic information processing in the lobula of the honeybee, Apis mellifera L. J. Insect Physiol. 50, 913-925 (2004).
  18. Rosner, R., Homberg, U. Widespread sensitivity to looming stimuli and small moving objects in the central complex of an insect brain. J. Neurosci. 33, 8122-8133 (2013).
  19. Trager, U., Homberg, U. Polarization-sensitive descending neurons in the locust: connecting the brain to thoracic ganglia. J. Neurosci. 31, 2238-2247 (2011).
  20. Heinze, S., Reppert, S. M. Sun compass integration of skylight cues in migratory monarch butterflies. Neuron. 69, 345-358 (2011).
  21. Greiner, B., Cronin, T. W., Ribi, W. A., Wcislo, W. T., Warrant, E. J. Anatomical and physiological evidence for polarisation vision in the nocturnal bee Megalopta genalis. J. Comp. Physiol. A. 193, 591-600 (2007).
  22. Stowasser, A., Buschbeck, E. K. Electrophysiological evidence for polarization sensitivity in the camera-type eyes of the aquatic predacious insect larva Thermonectus marmoratus. J. Exp. Biol. 215, 3577-3586 (2012).
  23. Osorio, D. Directionally selective cells in the locust medulla. J. Comp. Physiol. A. 159, 841-847 (1986).
  24. Nordström, K., Barnett, P. D., Moyer de Miguel, I. M., Brinkworth, R. S., O’Carroll, D. C. Sexual dimorphism in the hoverfly motion vision pathway. Curr. Biol. 18, 661-667 (2008).
  25. Plachetzki, D. C., Fong, C. R., Oakley, T. H. The evolution of phototransduction from an ancestral cyclic nucleotide gated pathway. Proc. Biol. Sci. 277, 1963-1969 (2010).
  26. Feuda, R., Hamilton, S. C., McInerney, J. O., Pisani, D. Metazoan opsin evolution reveals a simple route to animal vision. Proc. Natl. Acad. Sci. U.S.A. 109, 18868-18872 (2012).
  27. Palczewski, K., et al. Crystal structure of rhodopsin: A G protein-coupled receptor. Science. 289, 739-745 (2000).
  28. Hardie, R. C., Raghu, P. Visual transduction in Drosophila. Nature. 413, 186-193 (2001).
  29. Katti, C., et al. Opsin co-expression in Limulus differential regulation by light and a circadian clock. J. Exp. Biol. 213, 2589-2601 (2010).
  30. Smith, W. C., Price, D. A., Greenberg, R. M., Battelle, B. A. Opsins from the lateral eyes and ocelli of the horseshoe crab, Limulus polyphemus. Proc. Natl. Acad. Sci. U.S.A. 90, 6150-6154 (1993).
  31. Sison-Mangus, M. P., Bernard, G. D., Lampel, J., Briscoe, A. D. Beauty in the eye of the beholder: the two blue opsins of lycaenid butterflies and the opsin gene-driven evolution of sexually dimorphic eyes. J. Exp. Biol. 209, 3079-3090 (2006).
  32. Rushton, W. Review Lecture. Pigments and signals in colour vision. J. Physiol. 220, 1-31 (1972).
  33. Naka, K. I., Rushton, W. A. S-potentials from luminosity units in the retina of fish (Cyprinidae). J. Physiol. 185, 587-599 (1966).
  34. Lipetz, L. E., Loewenstein, W. R. . Handbook of Sensory Physiology. Vol. 1. Principles of Receptor Physiology. 1, 191-225 (1971).
  35. Matić, T., Laughlin, S. B. Changes in the intensity-response function of an insect’s photoreceptors due to light adaptation. J. Comp. Physiol. A. 145, 169-177 (1981).
  36. Evans, L. S., Peachey, N. S., Marchese, A. L. Comparison of three methods of estimating the parameters of the Naka-Rushton equation. Documenta Ophthalmologica. 84, 19-30 (1993).
  37. Aylward, G. W. A simple method of fitting the Naka-Rushton equation. Clinical Vision Sciences. 4, 275-277 (1989).
  38. Stavenga, D. G., Smits, R. P., Hoenders, B. J. Simple exponential functions describing the absorbance bands of visual pigment spectra. Vision Res. 33, 1011-1017 (1993).
  39. Bernard, G. D. Red-absorbing visual pigment of butterflies. Science. 203, 1125-1127 (1979).
  40. Ogawa, Y., et al. Coexpression of three middle wavelength-absorbing visual pigments in sexually dimorphic photoreceptors of the butterfly Colias erate. J. Comp. Physiol. A. 198, 857-867 (2012).
  41. Briscoe, A. D., Chittka, L. The evolution of color vision in insects. Annu. Rev. Entomol. 46, 471-510 (2001).
  42. Kelber, A., Thunell, C., Arikawa, K. Polarisation-dependent colour vision in Papilio butterflies. J. Exp. Biol. 204, 2469-2480 (2001).
  43. Kelber, A., Balkenius, A., Warrant, E. J. Scotopic colour vision in nocturnal hawkmoths. Nature. 419, 922-925 (2002).
  44. Koshitaka, H., Kinoshita, M., Vorobyev, M., Arikawa, K. Tetrachromacy in a butterfly that has eight varieties of spectral receptors. Proc. Biol. Sci. 275, 947-954 (2008).
  45. Blackiston, D., Briscoe, A. D., Weiss, M. R. Color vision and learning in the monarch butterfly, Danaus plexippus (Nymphalidae). J. Exp. Biol. 214, 509-520 (2011).
  46. Sison-Mangus, M. P., Briscoe, A. D., Zaccardi, G., Knuttel, H., Kelber, A. The lycaenid butterfly Polyommatus icarus uses a duplicated blue opsin to see green. J. Exp. Biol. 211, 361-369 (2008).
  47. Schneuwly, S., et al. Drosophilia ninaA gene encodes an eye-specific cyclophilin (cyclosporine A binding protein). Proc. Natl. Acad. Sci. U.S.A. , (1989).
  48. Luan, Z., Reddig, K., Li, H. S. Loss of Na(+)/K(+)-ATPase in Drosophila leads to blindness and age-dependent neurodegeneration. Exp. Neurol. 261, 791-801 (2014).
check_url/kr/53829?article_type=t

Play Video

Cite This Article
McCulloch, K. J., Osorio, D., Briscoe, A. D. Determination of Photoreceptor Cell Spectral Sensitivity in an Insect Model from In Vivo Intracellular Recordings. J. Vis. Exp. (108), e53829, doi:10.3791/53829 (2016).

View Video