Summary

基于毛细管的离心微流体装置单分散微滴的大小可控的形成

Published: February 22, 2016
doi:

Summary

Here, we demonstrate a simple production method for size-controllable, monodisperse, water-in-oil (W/O) microdroplets using a capillary-based centrifugal microfluidic device. This method requires only a small sample volume and enables high-yield production. We expect this method will be useful for rapid biochemical and cellular analyses.

Abstract

在这里,我们证明了快速生产尺寸可控,单分散,W / O型使用基于毛细管离心微流体装置的微滴的一个简单方法。的W / O微滴最近已在,使小型化的化学实验有力方法中。因此,W是需要/ O微滴开发一种通用的方法来产生单分散的。我们已经开发了用于生成单分散W¯¯基于基于毛细管离心轴对称共同流入微流体设备/ O微滴的方法。我们成功地通过调整毛细管孔口控制微滴的大小。我们的方法需要的设备比用其它微流体技术更容易使用的,只需要对封装样品溶液小体积(0.1-1微升),并能生产数十万的每秒的W / O微滴的。我们预计这种方法将有助于生物学研究需要的宝贵的生物小号通过保护该样品进行快速定量分析生化和生物学研究的体积amples。

Introduction

W / O微滴1-5对生物化学和生物工程的研究中许多重要的应用,包括蛋白质合成6,蛋白质结晶7,乳液PCR 8,9,电池封装10和人造细胞样系统5,6的建设。以产生用于这些应用W / O型的微滴,重要的标准是大小和W / O微滴的单分散性的控制。用于制造微流体装置的单分散,大小可控的W / O微滴11是基于共同流动方法12,13,流动聚焦方法14,15,而在微通道丁字路口方法16。虽然这些方法产生高度单分散的W / O微滴,该微制造过程需要微通道的制备复杂处理和专门的技术,并且还需要大量的样品溶液(至少几百81,因为在注射器泵和管即进行试样溶液的微通道的必然死体积的1)。因此,W被需要/ O微滴易于使用和低死体积的方法来产生单分散的。

本文用的实验程序的视频沿,描述了一种离心基于毛细管的轴对称共同流入微流体用于产生细胞大小的设备17中,单分散的W / O微滴( 图1)。这个简单的方法实现大小单分散性和可控性的大小。它仅需要一个台式微型离心机并固定在一个采样微型管基于毛细管轴对称共同流入微流体装置。我们的方法只需要非常小的体积(0.1微升),和不浪费的样品的任何显著体积。

Protocol

1.基于毛细管的微流控芯片的制备 将持有最多 注意:保持器设计示于图2A。 切出的每个人的四个盘(图2A(ⅰ) – (ⅳ)),从使用铣床2毫米厚的聚缩醛塑料板。使用下面的尺寸为每个保持器的四个圆盘的:(ⅰ)盘1直径8.5毫米,毛细管孔(CH)直径1.3毫米,螺丝孔(SH)直径1.8毫米; (ⅱ)盘2直径8.7毫米,CH直径为2.0毫米,SH…

Representative Results

在这项研究中,我们通过使用基于毛细管离心微流体装置(图1)呈现为细胞大小的W / O微滴的产生的简单方法。微流体装置是由一个毛细管保持器(图2B)的,两个玻璃毛细管( 如图 3C内和外玻璃 ​​毛细管),和含有含表面活性剂的油微管。我们注射0.1微升样品溶液到内玻璃毛细管,并置于所述内玻璃毛细管到外玻璃 ​​毛细管<s…

Discussion

使用该装置中,单分散的W / O微滴被喷射流17的高原-Rayleigh不稳定性产生的。显微镜检查没有发现卫星液滴的存在。在器件的制造中,三个关键步骤是必不可少的,成功地产生单分散的W / O微滴。首先,供给含有油表面活性剂和水溶液的直进流,四个盘毛细管孔必须设置在同心图案。第二,内毛细血管小心地插入到外毛细管,因为如果它接触到上部支架毛细管的尖端破裂容易。这个操作是?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by the PRESTO “Design and Control of Cellular Functions” research area of the Japan Science and Technology Agency (JST), a Grant-in-Aid for Scientific Research of Innovative Areas “Molecular Robotics” (Project No. 24104002) from the Ministry of Education, Culture, Sports, Science and Technology (MEXT), Japan, Grant-in-Aid for Young Scientists (A) (Project No. 24680033) and Scientific Research (B) (Project No. 26280097) from the Japan Society for the Promotion of Science (JSPS), and the Creative Design for Bioscience and Biotechnology course of the School of Bioscience and Biotechnology at Tokyo Tech.

Materials

2-mm-thick polyacetal plastic plate Tool Nikkyo Technos, Co., Ltd. (Japan) 244-6432-08
Milling machine Tool Roland DG Co., Ltd. (Japan) MDX-40A
End Mill RSE230-0.5*2.5 Tool NS Tool Co., Ltd. (Japan) 01-00644-00501
M2*40 screws Tool Jujo Synthetic Chemistry Labo. (Japan) 0001-024
Glass Capillry Puller Tool Narishige (Japan) PC-10
Microforge Tool Narishige (Japan) MF-900
Inner Glass Capillary Tool Narishige (Japan) G-1
Outer Glass Capillary Tool World Precision Instruments Inc. (USA) 1B200-6
1.5 ml Sample tube Tool INA OPTIKA CO.,LTD (Japan) ST-0150F
Hexadecane Reagent Wako Pure Chemical Industries Ltd. (Japan) 080-03685 
Sorbitan monooleate (Span 80) Reagent Tokyo Chemical Industry Co., Ltd. (Japan) S0060
Milli Q system Reagent Merck Millipore Corporation (Germany) ZRQSVP030
Swinging-out-type Mini-centrifuge Tool Hitech Co., Ltd. (Japan) ATT101
Digital Microscope Tool KEYENCE Corporation (Japan) VHX-2001

References

  1. Song, H., Chen, D. L., Ismagilov, R. F. Reactions in droplets in microfluidic channels. Angew. Chem., Int. Ed. 45 (44), 7336-7356 (2006).
  2. Huebner, A., et al. Microdroplets: a sea of applications?. Lab Chip. 8, 1244-1254 (2008).
  3. Taly, V., Kelly, B. T., Griffiths, A. D. Droplets as microreactors for highthroughput biology. ChemBioChem. 8 (3), 263-272 (2007).
  4. Teh, S. Y., Lin, R., Hung, L. H., Lee, A. P. . Droplet microfluidics. Lab Chip . 8, 198-220 (2008).
  5. Takinoue, M., Takeuchi, S. Droplet microfluidics for the study of artificial cells. Anal. Bioanal. Chem. 400 (6), 1705-1716 (2011).
  6. Hase, M., Yamada, A., Hamada, T., Baigl, D., Yoshikawa, K. Manipulation of cell-sized phospholipid-coated microdroplets and their use as biochemical microreactors. Langmuir. 23 (2), 348-352 (2007).
  7. Zheng, B., Tice, J. D., Roach, L. S., Ismagilov, R. F. A Droplet-Based, Composite PDMS/Glass Capillary Microfluidic System for Evaluating Protein Crystallization Conditions by Microbatch and Vapor-Diffusion Methods with On-Chip X-Ray Diffraction. Angew. Chem., Int. Ed. 43 (19), 2508-2511 (2004).
  8. Nakano, M., et al. Single-molecule PCR using water-in-oil emulsion. J. Biotechnol. 102 (2), 117-124 (2003).
  9. Diehl, F., et al. BEAMing: single-molecule PCR on microparticles in water-in-oil emulsions. Nat. Methods. 3, 551-559 (2006).
  10. He, M., et al. Selective encapsulation of single cells and subcellular organelles into picoliter- and femtoliter-volume droplets. Anal. Chem. 77 (6), 1539-1544 (2005).
  11. Baroud, C., Gallaire, F., Dangla, R. Dynamics of microfluidic droplets. Lab Chip. 10, 2032-2045 (2010).
  12. Utada, A. S., Nieves, A. F., Stone, H. A., Weitz, D. A. Dripping to jetting transitions in coflowing liquid streams. Phys. Rev. Lett. 99 (9), 094502 (2007).
  13. Cramer, C., Fischer, P., Windhab, E. J. Drop formation in a co-flowing ambient fluid. Chem. Eng. Sci. 59 (15), 3045-3058 (2004).
  14. Anna, S. L., Bontoux, N., Stone, H. A. Formation of dispersions using "flow-focusing" in microchannels. Appl. Phys. Lett. 82, 364-366 (2003).
  15. Takeuchi, S., Garstecki, P., Weibel, D. B., Whitesides, G. M. An axisymmetric flow-focusing microfluidic device. Adv. Mater. 17 (8), 1067-1072 (2005).
  16. Thorsen, T., Roberts, R. W., Arnold, F. H., Quake, S. R. Dynamic pattern formation in a vesicle-generating microfluidic device. Phys. Rev. Lett. 86 (18), 4163-4166 (2001).
  17. Yamashita, H., et al. Generation of monodisperse cell-sized microdroplets using a centrifuge-based axisymmetric co-flowing microfluidic device. J. Biosci. Biotech. 119 (4), 492-495 (2015).
  18. Maeda, K., Onoe, H., Takinoue, M., Takeuchi, S. Controlled synthesis of 3D multi-compartmental particles with centrifuge-based microdroplet formation from a multi-barrelled capillary. Adv. Mater. 24 (10), 1340-1346 (2012).
check_url/kr/53860?article_type=t

Play Video

Cite This Article
Morita, M., Yamashita, H., Hayakawa, M., Onoe, H., Takinoue, M. Capillary-based Centrifugal Microfluidic Device for Size-controllable Formation of Monodisperse Microdroplets. J. Vis. Exp. (108), e53860, doi:10.3791/53860 (2016).

View Video