Summary

Anvendelse af kanin Eyes i farmakokinetiske studier af intraokulært Drugs

Published: July 23, 2016
doi:

Summary

Rabbits are widely used to study the pharmacokinetics of intraocular drugs. We describe a method for conducting pharmacokinetic studies of intraocular drugs using rabbit eyes.

Abstract

Den intraokulære rute lægemiddelindgivelse muliggør levering af høje koncentrationer af terapeutiske lægemidler, samtidig minimere deres systemiske absorption. Adskillige lægemidler indgives i forkammeret eller glaslegemet, og den intraokulære injektion har været effektiv til at kurere forskellige intraokulære sygdomme. Kaninøjne er ofte blevet brugt til oftalmisk forskning, som dyret er let at håndtere og økonomisk i forhold til andre pattedyr, og størrelsen af ​​en kanin øje er svarer til den for det menneskelige øje. Anvendelse af en 30 G nål, kan lægemidler injiceres i intrakameral og intravitreale rum af kaninøjne. Øjet derefter nedfrosset indtil analyse, og kan opdeles i den vandige humor, vitreous, og retina / choroidea. De glasagtige og retina / choroid prøver kan homogeniseres og opløst før analyse. Derefter kan immunoassays udføres for at måle koncentrationerne af intraokulære lægemidler i hvert rum. Passende farmakokinetiske modeller kan væreanvendes til at beregne flere parametre, såsom halveringstiden og maksimal koncentration af lægemidlet. Kaninøjne kan være en god model for farmakokinetiske studier af intraokulære lægemidler.

Introduction

Før fremkomsten af ​​intraokulære lægemiddeladministration, den største bekymring for medicinsk terapi til intraokulære sygdomme var den effektivitet, hvormed lægemidlet kan trænge ind i øjet. Blod-okulær barriere forhindrer mange stoffer, herunder narkotika, i at diffundere ind i øjet. Derfor koncentrationer af lægemidler, der ligger over terapeutiske niveauer kan ikke let opnås. Den intraokulære lægemiddelindgivelse fremgangsmåde, herunder intrakameral og intravitreale injektioner, kan direkte passere blod-okulær barriere 1-3, således at der kan opnås terapeutiske koncentrationer af lægemidler i øjet 4,5.

Følgelig har intravitreal lægemiddeltilførsel blevet en populær metode til behandling for flere intraokulære sygdomme 5,6. For eksempel er intravitreal injektion bredt udført for alder maculadegeneration, diabetisk retinopati, retinal vene okklusion, og intraokulære infektioner 7-10. Specielt efterindførelsen af ​​anti-VEGF medicin, er hyppigheden af ​​intravitreale injektioner bemærkelsesværdigt forøget til behandling af retinale sygdomme. Derfor er det vigtigt at forstå de intraokulære farmakokinetik sådanne lægemidler til evaluering af effektiviteten og sikkerheden af ​​den medicinske behandling.

Selvom den intraokulære administration af lægemidler anses et stort gennembrud i medicinsk terapi til øjensygdomme, overvågning af koncentrationen lægemidlet i øjeæblet er teknisk krævende. Eftersom humane øjne indeholder kun små mængder af vandig humor (ca. 200 pi) og glasagtige (ca. 4,5 ml, tabel 1), er det teknisk vanskeligt at opnå tilstrækkelige mængder af okulær fluid at måle lægemiddelkoncentrationen. Endvidere metoder, der anvendes til at opnå øjet væske, såsom glaslegemet aflytning eller forreste kammer paracentese, kan beskadige øjenvævet og resultere i alvorlige komplikationer, såsom katarakter, endophthalmitis, ellernethindeløsning 11,12. Derfor er dyremodeller anvendes i farmakokinetiske studier af almindeligt anvendte intraokulære lægemidler 13. Blandt disse dyremodeller, kaniner eller aber er de hyppigst anvendte dyr.

Kaniner, som er små pattedyr af ordenen Lagomorpha i familien leporidae, findes i flere dele af verden. Fordi kaniner er ikke aggressive, de er nemme at håndtere, bruge i et eksperiment, og observere. Lavere omkostninger, lette tilgængelighed af dyret, svarende øjestørrelse til mennesker, og en stor database af information til sammenligning fordel udfører farmakokinetiske undersøgelser under anvendelse kaninøjne. I dette papir, er en protokol for farmakokinetiske undersøgelser af intraokulære lægemidler i kaninøjne beskrevet.

Protocol

Vores protokol følger retningslinjerne fra Institutional Animal Care og brug Udvalg (IACUC) i Seoul National University Bundang Hospital, som godkendte alle de dyreforsøg og dyrenes pleje metoder, der præsenteres i denne protokol. Den IACUC er i fuld overensstemmelse med den ottende udgave af Guide til Pleje og anvendelse af forsøgsdyr (2011). Alle procedurer blev udført med overholdelse af retningslinjerne af foreningen for forskning i Vision og Oftalmologi Erklæring for anvendelse af dyr i Ophthalmic og Vision R…

Representative Results

Den fremgangsmåde, der anvendes til at udføre intravitreale injektioner af et lægemiddel af interesse i kaninøjne med sterile teknikker er vist i figur 1. De behandlede øjne er enukleeres på et fastsat tidspunkt og opbevaret ved -80 ° C. Til analysen, tre rum, den vandige humor, glaslegemet, og retina / choroidea, er adskilt fra de frosne kaninøjne, som demonstreret i figur 2. Prøver af rummene er forberedt til ELISA. Efter inkubering med et sek…

Discussion

With the increasing use of intraocular drugs, such as anti-vascular endothelial growth factor (VEGF) agents, for the treatment of diverse ocular diseases, knowledge of the tissue distribution and clearance of the drug after the intraocular injection is important. Understanding the pharmacokinetics of intraocular drugs is important for understanding the efficacy and safety of drugs, determining the optimal dosage of the drugs, and minimizing systemic or intraocular complications. However, detailed pharmacokinetic studies …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We would like to thank Ms. Ji Hyun Park and Ji Yeon Park for their technical assistance in the animal experiments. This work was supported by a grant from the Seoul National University Bundang Hospital Research Fund (grant number: Grant No. 14-2014-022) and from a grant (CCP-13-02-KIST) from the Convergence Commercialization Project of the National Research Council of Science and Technology, Seoul, Korea.

Materials

Zoletil Virbac Laboratories, Carros Cedex, France
Xylazine hydrochloride  Fort Dodge Laboratories, Fort Dodge, IA
Proparacaine hydrochloride (Alcaine) Alcon laboratories, Fort Worth, TX
Phenylephrine hydrochloride and tropicamide Santen Pharmaceutical, Co., Osaka, Japan
Recombinant Human VEGF 165 R&D systems 293-VE-050
Carbobate-Bicarbonate buffer SIGMA C3041-50CAP
NUNC MICROWELL 96F                                                               W/LID NUNCLON D SI                                                                          Thermo SCIENTIFIC 167008 96 well plate
Bovine Serum Albumin (BSA) 25grams(Net) BOVOGEN BSA025
Phosphate Buffered Saline (PBS) pH7.4 (1X), 500mL gibco 10010-023
Sheep anti-Human IgG Secondary Antibody, HRP conjugate Thermo SCIENTIFIC PA1-28652
Goat Anti-Human IgG Fc(HRP) abcam ab97225
Goat anti-Human IgG, Fab'2 Secondary Antibody, HRP conjugate Thermo SCIENTIFIC PA1-85183
CelLytic MT  Cell Lysis Reagent SIGMA C3228-50ML lysis buffer
100 Scalpel Blades nopa instruments BLADE #15
100 Scalpel Blades nopa instruments BLADE #10
FEATHER SURGICAL BLADE STAINLESS STEEL FEATHER 11
1-StepTM TMB-Blotting substrate solution, 250mL Thermo SCIENTIFIC 34018
Stable Peroxide Substrate Buffer (10X), 100mL Thermo SCIENTIFIC 34062
Softmax Pro Molecular Devices v.5.4.1 software for generating standard curve
SAAM II  Saam Institute, Seattle, WA software for pharmacokinetic modeling
Phoenix WinNonlin Pharsight, Cary, NC v. 6.3 software for pharmacokinetic modeling
Avastin (bevacizumab) Genentech

References

  1. Urtti, A. Challenges and obstacles of ocular pharmacokinetics and drug delivery. Adv Drug Deliv Rev. 58, 1131-1135 (2006).
  2. Geroski, D. H., Edelhauser, H. F. Drug delivery for posterior segment eye disease. Invest Ophthalmol Vis Sci. 41, 961-964 (2000).
  3. Ghate, D., Edelhauser, H. F. Ocular drug delivery. Expert Opin Drug Deliv. 3, 275-287 (2006).
  4. Del Amo, M. E., Urtti, A. Current and future ophthalmic drug delivery systems. A shift to the posterior segment. Drug Discov Today. 13, 135-143 (2008).
  5. Avery, R. L., et al. Intravitreal injection technique and monitoring: updated guidelines of an expert panel. Retina. 34, S1-S18 (2014).
  6. Kim, Y. C., Chiang, B., Wu, X., Prausnitz, M. R. Ocular delivery of macromolecules. J Control Release. 190, 172-181 (2014).
  7. Group, C. R., et al. Ranibizumab and bevacizumab for neovascular age-related macular degeneration. N Engl J Med. 364, 1897-1908 (2011).
  8. Campochiaro, P. A., et al. Sustained benefits from ranibizumab for macular edema following central retinal vein occlusion: twelve-month outcomes of a phase III study. Ophthalmology. 118, 2041-2049 (2011).
  9. Brown, D. M., et al. Ranibizumab for macular edema following central retinal vein occlusion: six-month primary end point results of a phase III study. Ophthalmology. 117, 1124-1133 (2010).
  10. Diabetic Retinopathy Clinical Research Network. Aflibercept, bevacizumab, or ranibizumab for diabetic macular edema. N Engl J Med. 372, 1193-1203 (2015).
  11. McCannel, C. A. Meta-analysis of endophthalmitis after intravitreal injection of anti-vascular endothelial growth factor agents: causative organisms and possible prevention strategies. Retina. 31, 654-661 (2011).
  12. Meyer, C. H., et al. Incidence of rhegmatogenous retinal detachments after intravitreal antivascular endothelial factor injections. Acta Ophthalmol. 89, 70-75 (2011).
  13. Del Amo, E. M., Urtti, A. Rabbit as an animal model for intravitreal pharmacokinetics: Clinical predictability and quality of the published data. Exp Eye Res. 137, 111-124 (2015).
  14. Hughes, P. M., Krishnamoorthy, R., Mitra, A. K. Vitreous disposition of two acycloguanosine antivirals in the albino and pigmented rabbit models: a novel ocular microdialysis technique. J Ocul Pharmacol Ther. 12, 209-224 (1996).
  15. Ahn, J., et al. Pharmacokinetics of Intravitreally Injected Bevacizumab in Vitrectomized Eyes. J Ocul Pharmacol Ther. , (2013).
  16. Park, S. J., et al. Intraocular pharmacokinetics of intravitreal vascular endothelial growth factor-Trap in a rabbit model. Eye (Lond). 29, 561-568 (2015).
  17. Jager, R. D., Aiello, L. P., Patel, S. C., Cunningham, E. T. Risks of intravitreous injection: a comprehensive review. Retina. 24, 676-698 (2004).
  18. Durairaj, C., Shah, J. C., Senapati, S., Kompella, U. B. Prediction of vitreal half-life based on drug physicochemical properties: quantitative structure-pharmacokinetic relationships (QSPKR). Pharm Res. 26, 1236-1260 (2009).
  19. Ahn, S. J., et al. Intraocular pharmacokinetics of ranibizumab in vitrectomized versus nonvitrectomized eyes. Invest Ophthalmol Vis Sci. 55, 567-573 (2014).
  20. Mochizuki, K., et al. Intraocular kinetics of ceftazidime (Modacin). Ophthalmic Res. 24, 150-154 (1992).
  21. Bakri, S. J., et al. Pharmacokinetics of intravitreal ranibizumab (Lucentis). Ophthalmology. 114, 2179-2182 (2007).
  22. Kondo, T., Miura, M., Imamichi, M. Measurement method of the anterior chamber volume by image analysis. Br J Ophthalmol. 70, 668-672 (1986).
  23. Toris, C. B., Yablonski, M. E., Wang, Y. L., Camras, C. B. Aqueous humor dynamics in the aging human eye. Am J Ophthalmol. 127, 407-412 (1999).
  24. Remtulla, S., Hallett, P. E. A schematic eye for the mouse, and comparisons with the rat. Vision Res. 25, 21-31 (1985).
  25. Barza, M., Zak, O., Sande, M. A. Animal models in evaluation of chemotherapy of ocular infections. Experimental Models in Antimicrobial Chemotherapy. , 187-211 (1986).
  26. Hughes, A. A schematic eye for the rat. Vision Res. 19, 569-588 (1979).
  27. Maurice, D. M., Mishima, S. . Ocular pharmacokinetics. 69, (1984).
  28. Greenbaum, S., Lee, P. Y., Howard-Williams, J., Podos, S. M. The optically determined corneal and anterior chamber volumes of the cynomolgus monkey. Curr Eye Res. 4, 187-190 (1985).
  29. Ruby, A. J., Williams, G. A., Blumenkranz, M. S. Vitreous humor. Foundations of Clinical Ophthalmology. , (2006).
  30. Jaffe, G. J., Ashton, P., Andrew, P. . Intraocular Drug Delivery. , (2006).
  31. Iyer, M. N., et al. Clearance of intravitreal moxifloxacin. Invest Ophthalmol Vis Sci. 47, 317-319 (2006).
  32. Fauser, S., et al. Pharmacokinetics and safety of intravitreally delivered etanercept. Graefes Arch Clin Exp Ophthalmol. 242, 582-586 (2004).
  33. Scholes, G. N., O’Brien, W. J., Abrams, G. W., Kubicek, M. F. Clearance of triamcinolone from vitreous. Arch Ophthalmol. 103, 1567-1569 (1985).
  34. Stastna, M., Behrens, A., McDonnell, P. J., Van Eyk, J. E. Analysis of protein composition of rabbit aqueous humor following two different cataract surgery incision procedures using 2-DE and LC-MS/MS. Proteome Sci. 9, 8 (2011).
  35. Sinapis, C. I., et al. Pharmacokinetics of intravitreal bevacizumab (Avastin(R)) in rabbits. Clin Ophthalmol. 5, 697-704 (2011).
  36. Gaudreault, J., Fei, D., Rusit, J., Suboc, P., Shiu, V. Preclinical pharmacokinetics of Ranibizumab (rhuFabV2) after a single intravitreal administration. Invest Ophthalmol Vis Sci. 46, 726-733 (2005).
  37. Maurice, D. Review: practical issues in intravitreal drug delivery. J Ocul Pharmacol Ther. 17, 393-401 (2001).
  38. Laude, A., et al. Intravitreal therapy for neovascular age-related macular degeneration and inter-individual variations in vitreous pharmacokinetics. Prog Retin Eye Res. 29, 466-475 (2010).
  39. Christoforidis, J. B., Carlton, M. M., Knopp, M. V., Hinkle, G. H. PET/CT imaging of I-124-radiolabeled bevacizumab and ranibizumab after intravitreal injection in a rabbit model. Invest Ophthalmol Vis Sci. 52, 5899-5903 (2011).
  40. Sangwan, V. S., Pearson, P. A., Paul, H., Comstock, T. L. Use of the Fluocinolone Acetonide Intravitreal Implant for the Treatment of Noninfectious Posterior Uveitis: 3-Year Results of a Randomized Clinical Trial in a Predominantly Asian Population. Ophthalmol Ther. 4, 1-19 (2015).
  41. Bajwa, A., Aziz, K., Foster, C. S. Safety and efficacy of fluocinolone acetonide intravitreal implant (0.59 mg) in birdshot retinochoroidopathy. Retina. 34, 2259-2268 (2014).
  42. Sanford, M. Fluocinolone acetonide intravitreal implant (Iluvien(R)): in diabetic macular oedema. Drugs. 73, 187-193 (2013).
  43. Haller, J. A., et al. Dexamethasone intravitreal implant in patients with macular edema related to branch or central retinal vein occlusion twelve-month study results. Ophthalmology. 118, 2453-2460 (2011).
  44. Boyer, D. S., et al. Three-year, randomized, sham-controlled trial of dexamethasone intravitreal implant in patients with diabetic macular edema. Ophthalmology. 121, 1904-1914 (2014).
  45. Patel, S. R., et al. Targeted administration into the suprachoroidal space using a microneedle for drug delivery to the posterior segment of the eye. Invest Ophthalmol Vis Sci. 53, 4433-4441 (2012).
  46. Makadia, H. K., Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 3, 1377-1397 (2011).
check_url/kr/53878?article_type=t

Play Video

Cite This Article
Ahn, S. J., Hong, H. K., Na, Y. M., Park, S. J., Ahn, J., Oh, J., Chung, J. Y., Park, K. H., Woo, S. J. Use of Rabbit Eyes in Pharmacokinetic Studies of Intraocular Drugs. J. Vis. Exp. (113), e53878, doi:10.3791/53878 (2016).

View Video