Summary

개발<em> 체외</em> 분석은 중간 엽 세포를 시행 한 상피 - 중간 엽 전환의 수축 기능을 평가하는

Published: June 10, 2016
doi:

Summary

Here, we describe the development and application of a gel contraction assay for evaluating contractile function in mesenchymal cells that underwent epithelial-mesenchymal transition.

Abstract

Fibrosis is often involved in the pathogenesis of various chronic progressive diseases such as interstitial pulmonary disease. Pathological hallmark is the formation of fibroblastic foci, which is associated with the disease severity. Mesenchymal cells consisting of the fibroblastic foci are proposed to be derived from several cell sources, including originally resident intrapulmonary fibroblasts and circulating fibrocytes from bone marrow. Recently, mesenchymal cells that underwent epithelial-mesenchymal transition (EMT) have been also supposed to contribute to the pathogenesis of fibrosis. In addition, EMT can be induced by transforming growth factor β, and EMT can be enhanced by pro-inflammatory cytokines like tumor necrosis factor α. The gel contraction assay is an ideal in vitro model for the evaluation of contractility, which is one of the characteristic functions of fibroblasts and contributes to wound repair and fibrosis. Here, the development of a gel contraction assay is demonstrated for evaluating contractile ability of mesenchymal cells that underwent EMT.

Introduction

섬유화 간질 성 폐 질환, 심장 섬유증, 간경변, 단말 신부전, 전신성 경화증,자가 면역 질환 각종 만성 진행성 질환의 발병에 관여된다. 간질 성 폐 질환 중 특발성 폐 섬유증 (IPF)은 만성 진행성 질환이며, 불량한 예후를 보여줍니다. IPF의 병리학 적 특징은 예후와 관련된 활성화 된 섬유 아세포 및 근섬유로 이루어진 섬유 아세포 초점의 개발이다. 이러한 폐 섬유 아 세포의 기원은 원래 주민 폐 섬유 아 세포를 포함하고 골수에서 섬유 세포를 순환 여러 중간 엽 세포에서 파생 할 것을 제안한다. 최근 상피 간엽 전이 (EMT)는 간엽 세포 (2)의 형성과 관련이 제안되었으며, 섬유 성 질환의 발병에 기여.

그것은 생각된다 EMT는 종양의 침윤과 전이 3를 포함하여 태아의 발달 과정에서 중요한 역할을, 상처 치유, 암의 진행을한다. EMT의 방법에 따라, 상피 세포는 E-cadherin의 상피 마커의 손실에 의해 중간 엽 세포의 능력을 획득하고, 그러한 멘틴 같은 중배엽 마커, 및 α-평활근 액틴 (SMA) -4,5- 의해 발현. 이전 연구 EMT 처리가 신장 67에서 폐 섬유증 조직의 발달과 관련되었다는 증거를 나타내었다. 또한, 만성 염증은 섬유 성 질환 (8)을 촉진; 또한, 종양 괴사 인자 상과 부재 (14) (TNFSF14; LIGHT)와 같은 염증성 사이토 카인, 종양 괴사 인자 (TNF) -α 및 인터루킨 1β는 EMT 9-12을 향상시키는 것으로 나타났다.

콜라겐 겔 수축 분석법, 섬유 아세포 타입 I에 포함 된 콜라겐 계 세포 수축 분석법콜라겐 겔 삼차원, 수축의 평가를위한 시험 관내 모델에서 이상적이다. 수축성 섬유 아세포의 특성 함수 중 하나이며 정상 상처 복구 및 섬유증 (13)에 기여한다. 이 분석에서, 섬유 아세포의 부착이 어떤 조건 하에서 기계적 장력을 생성하도록되어 I는 인테그린 의존성 메커니즘을 통해 입력 콜라겐, 결과적으로 조직의 수축을 유도하는 것으로 생각된다.

여기서, 겔 수축 분석법의 개발이 EMT을받은 세포의 수축 기능의 획득을 평가하도록 적응 될 것으로보고있다. 이 보고서는이 변형 분석이 EMT을 시행 한 중간 엽 세포의 수축력을 평가하기에 적합 함을 보여줍니다.

Protocol

1. 준비 및 문화 폐 상피 세포의 둘 베코 변형 이글 중간 (DMEM)에서 배양 A549 인간 폐 상피 세포 (접착 세포 라인) 100 μg의가 / ㎖ 스트렙토 마이신, 10 % 우 태아 혈청 (FBS), 100 IU / ml의 페니실린, 및. 분리 한 배양 접시에서 세포 배양 배지를 버리고, 5 회 세척 – 포스페이트 완충 식염수 10 ㎖ (PBS). 세척 후 즉시 PBS를 대기음. 3 분 동안 CO 2 2ml의 트립신 / 에틸렌 디아민 테트?…

Representative Results

EMT 동안, 상피 세포는 E-cadherin의 같은 상피 마커를 잃게 및 멘틴 및 α-평활근은 4,5를하는 걸 같은 중간 엽 마커의 발현을 얻을 수 있습니다. TGF-β1 및 TNF-α와 A549 인간의 폐 상피 세포의 배양은 EMT를 유도한다. 정상 A549 세포의 모양은 상피 세포 (도 3a)의 특성 인 형상 및 삼각형 등 자갈 돌로 있지만, TGF-β1 및 TNF-α로 자극 한 후, 외관 간엽 비슷 긴 스핀?…

Discussion

본 연구에서 개발 된이 프로토콜은 두 단계를 포함한다. 첫 번째 단계에서는 두 번째 단계는 겔 수축 분석법 동안, EMT를 유도하기 위해 실행된다. 이 세포는 EMT을받은 것을 확인하는 것이 중요하기 때문에, 2 단계는 형태 학적 및 유전자 발현의 변화에​​ 훌륭한 보완을 제공합니다. 이전 연구 A549 세포 EMT는 TGF-β1을 24 만에 의한 것으로 나타났다; 우리는 이전에 10보고 그러나, TNF-…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Tadashi Koyama for technical help. This work was supported in part by JSPS KAKENHI Grant Numbers 23249045, 15K09211, 15K19172; a grant to the Respiratory Failure Research Group from the Ministry of Health, Labour and Welfare, Japan; a grant for research on allergic disease and immunology, Japan.

Materials

DMEM sigma aldrich 11965-092 For A549 medium
FBS GIBCO 10437
Transforming Growth Factor-β1, Human, recombinant Wako Laboratory chemicals 209-16544
Recombinant Human TNF-α R&D systems 210-TA/CF
E-Cadherin (24E10) Rabbit mAb Cell Signaling Technology #3195 1:3000 dilution
Vimentin (D21H3) Rabbit mAb Cell Signaling Technology #5741 1:3000 dilution
Anti-α-Tubulin antibody sigma aldrich T9026 1:10000 dilution
Monoclonal Anti-Actin, α-Smooth Muscle antibody  sigma aldrich A5228 1:10000 dilution
Anti-N-cadherin antibody BD Transduction Laboratories #610920 1:1000 dilution
Anti-Mouse IgG, HRP-Linked Whole Ab Sheep (secondary antibody) GE Healthcare NA931-100UL 1:20000 dilution
Anti-Rabbit IgG, HRP-Linked Whole Ab Donkey (secondary antibody) GE Healthcare NA934-100UL 1:20000 dilution
blocking reagent GE Healthcare RPN418 2% in TBS-T
6 Well Clear Flat Bottom TC-Treated Multiwell Cell Culture Plate, with Lid corning #353046
100 mm cell culture dish TPP #93100
DMEM, powder life technologies 12100-046 For 4×DMEM
type 1 collagen gel Nitta gelatin Cellmatrix type I-A
24 well cell culture plate AGC TECHNO GLASS 1820-024
Gel Documentation System  ATTO AE-6911FXN Gel imager
gel analyzing software ATTO Densitograph, ver. 3.00 analysing software bundled with AE-6911FXN
Trypsin-EDTA (0.05%), phenol red life technologies 25300054
24 Well Plates, Non-Treated IWAKI 1820-024
Trypan Blue Solution, 0.4% life technologies 15250-061
RNA extraction kit Qiagen 74106
reverse transcriptase life technologies 18080044
real time PCR system Stratagene Mx-3000P
SYBR green PCR kit Qiagen 204145
Protease Inhibitor Cocktail (100X) life technologies 78429
PVDF membrane ATTO 2392390
protein assay kit bio-rad 5000006JA 
polyacrylamide gel ATTO 2331810
western blotting detection reagent GE Healthcare RPN2232
cold CCD camera ATTO Ez-Capture MG/ST
Trypsin inhibitor sigma aldrich T9003-100MG
Polyoxyethylene (20)Sorbitan Monolaurate Wako Laboratory chemicals 163-11512
polyoxyethylene (9) octyiphenyl ether Wako Laboratory chemicals 141-08321

References

  1. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. The Journal of pathology. 214, 199-214 (2008).
  2. Hardie, W. D., Glasser, S. W., Hagood, J. S. Emerging concepts in the pathogenesis of lung fibrosis. The American journal of pathology. 175, 3-16 (2009).
  3. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 125, 1795-1808 (2012).
  4. Thiery, J. P., Acloque, H., Huang, R. Y., Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 139, 871-890 (2009).
  5. Kalluri, R., Weinberg, R. A. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 119, 1420-1428 (2009).
  6. Forino, M., et al. TGFbeta1 induces epithelial-mesenchymal transition, but not myofibroblast transdifferentiation of human kidney tubular epithelial cells in primary culture. International journal of experimental pathology. 87, 197-208 (2006).
  7. Yang, S., et al. Participation of miR-200 in pulmonary fibrosis. The American journal of pathology. 180, 484-493 (2012).
  8. Reynolds, H. Y. Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the 1970s to 1980s. American journal of respiratory and critical care medicine. 171, 98-102 (2005).
  9. Camara, J., Jarai, G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis & tissue repair. 3, 2 (2010).
  10. Kamitani, S., et al. Simultaneous stimulation with TGF-beta1 and TNF-alpha induces epithelial mesenchymal transition in bronchial epithelial cells. International archives of allergy and immunology. 155, 119-128 (2011).
  11. Mikami, Y., et al. Lymphotoxin beta receptor signaling induces IL-8 production in human bronchial epithelial cells. PloS one. 9, e114791 (2014).
  12. Yamauchi, Y., et al. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Experimental lung research. 36, 12-24 (2010).
  13. Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. The Journal of cell biology. 124, 401-404 (1994).
  14. Ramos, C., et al. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway . American journal of physiology. Lung cellular and molecular physiology. 299, L222-L231 (2010).
  15. Ren, Z. X., Yu, H. B., Li, J. S., Shen, J. L., Du, W. S. Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition. Bioscience reports. 35, (2015).
  16. Brinkmann, V., Kinzel, B., Kristofic, C. TCR-independent activation of human CD4+ 45RO- T cells by anti-CD28 plus IL-2: Induction of clonal expansion and priming for a Th2 phenotype. Journal of immunology. 156, 4100-4106 (1996).
  17. Krug, M. S., Berger, S. L. First-strand cDNA synthesis primed with oligo(dT). Methods in enzymology. 152, 316-325 (1987).
  18. Morozumi, M., et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. Journal of clinical microbiology. 44, 1440-1446 (2006).
  19. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry. 150, 76-85 (1985).
  20. Wiechelman, K. J., Braun, R. D., Fitzpatrick, J. D. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry. 175, 231-237 (1988).
  21. Ursitti, J. A., Mozdzanowski, J., Speicher, D. W., et al. Electroblotting from polyacrylamide gels. Current protocols in protein science. Chapter 10, Unit 10.7 (2001).
  22. Kricka, L. J., Voyta, J. C., Bronstein, I. Chemiluminescent methods for detecting and quantitating enzyme activity. Methods in enzymology. 305, 370-390 (2000).
  23. Noguchi, S., et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 20, 4660-4672 (2014).
  24. Kasai, H., Allen, J. T., Mason, R. M., Kamimura, T., Zhang, Z. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory research. 6, 56 (2005).
  25. Chen, X., et al. Integrin-mediated type II TGF-beta receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. The Journal of clinical investigation. 124, 3295-3310 (2014).
  26. Saito, A., et al. An integrated expression profiling reveals target genes of TGF-beta and TNF-alpha possibly mediated by microRNAs in lung cancer cells. PloS one. 8, e56587 (2013).
  27. Dvashi, Z., et al. Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. The American journal of pathology. 184, 2936-2950 (2014).
  28. Hallgren, O., et al. Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients. Journal of translational medicine. 10, 171 (2012).
  29. Kobayashi, T., et al. Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. American journal of physiology. Lung cellular and molecular physiology. 306, L1006-L1015 (2014).
  30. Horie, M., et al. Histamine induces human lung fibroblast-mediated collagen gel contraction via histamine H1 receptor. Experimental lung research. 40, 222-236 (2014).
  31. Kohyama, T., et al. PGD(2) modulates fibroblast-mediated native collagen gel contraction. American journal of respiratory cell and molecular biology. 27, 375-381 (2002).
  32. Muir, A. B., et al. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition. Experimental cell research. 330, 102-110 (2015).
  33. Zhong, Q., et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. American journal of respiratory cell and molecular biology. 45, 498-509 (2011).
  34. Liu, X. Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell motility and the cytoskeleton. 65, 935-944 (2008).
check_url/kr/53974?article_type=t

Play Video

Cite This Article
Mikami, Y., Matsuzaki, H., Takeshima, H., Makita, K., Yamauchi, Y., Nagase, T. Development of an In Vitro Assay to Evaluate Contractile Function of Mesenchymal Cells that Underwent Epithelial-Mesenchymal Transition. J. Vis. Exp. (112), e53974, doi:10.3791/53974 (2016).

View Video