Summary

Развитие<em> In Vitro</em> Анализ для оценки сократительной функции мезенхимальных клеток, перенесшей Эпителиальные-мезенхимальных переходной

Published: June 10, 2016
doi:

Summary

Here, we describe the development and application of a gel contraction assay for evaluating contractile function in mesenchymal cells that underwent epithelial-mesenchymal transition.

Abstract

Fibrosis is often involved in the pathogenesis of various chronic progressive diseases such as interstitial pulmonary disease. Pathological hallmark is the formation of fibroblastic foci, which is associated with the disease severity. Mesenchymal cells consisting of the fibroblastic foci are proposed to be derived from several cell sources, including originally resident intrapulmonary fibroblasts and circulating fibrocytes from bone marrow. Recently, mesenchymal cells that underwent epithelial-mesenchymal transition (EMT) have been also supposed to contribute to the pathogenesis of fibrosis. In addition, EMT can be induced by transforming growth factor β, and EMT can be enhanced by pro-inflammatory cytokines like tumor necrosis factor α. The gel contraction assay is an ideal in vitro model for the evaluation of contractility, which is one of the characteristic functions of fibroblasts and contributes to wound repair and fibrosis. Here, the development of a gel contraction assay is demonstrated for evaluating contractile ability of mesenchymal cells that underwent EMT.

Introduction

Фиброз участвует в патогенезе различных хронических прогрессирующих заболеваний, таких как интерстициальный заболевания легких, сердечный фиброз печени , цирроз печени, терминальной почечной недостаточности, системный склероз, и аутоиммунные заболевания 1. Среди интерстициальных заболеваний легких, идиопатический легочный фиброз (IPF) представляет собой хроническое прогрессирующее заболевание, и показывает плохой прогноз. Патологический признак IPF является развитие фибробластической очагов, состоящий из активированных фибробластов и миофибробластов, которые связаны с прогнозом. Истоки таких легочных фибробластов предлагается быть получены из нескольких мезенхимальных клеток, в том числе легочных фибробластов, первоначально резидентных и циркулирующих фиброциты из костного мозга. В последнее время был предложен переход эпителиально-мезенхимальной (ЕМТ), связаны с образованием клеток мезенхимы 2, и внести свой ​​вклад в патогенез фиброзных заболеваний.

Считается, что чемпионат ЕвропыТ играет важную роль в процессе развития плода, заживление ран, а также прогрессирование рака, в том числе опухолевой инвазии и метастазирования 3. После процесса EMT, эпителиальные клетки получают способность мезенхимальных клеток потерей эпителиальных маркеров, таких как Е-кадгерина, и экспрессии маркеров мезенхимальных, таких как виментину и α-актин гладких мышц (SMA) 4,5. Предыдущие исследования показали , доказательства того, что процесс ЕМТ был связан с развитием фиброза тканей в почках 6 и 7 легких. Кроме того, хроническое воспаление способствует болезни фиброзный 8; Кроме того, такие цитокины , как фактор некроза опухоли надсемейства элемента 14 (TNFSF14, свет), фактор некроза опухолей (ФНО), и интерлейкин-1 & beta ; , было показано , что повышение EMT 9-12.

сокращение анализа коллагеновый гель, коллаген на основе сжатия клеток для анализа, в котором фибробласты встроены в типа Iколлагеновый гель трехмерно, является идеалом в пробирке модель для оценки сократительной способности . Сократимость является одной из характерных функций фибробластов и способствует нормальному заживлении ран и фиброза 13. В этом анализе, полагают, что присоединение фибробластов типа коллагена через интегрин-зависимые механизмы, как предполагается производить механические напряжения при определенных условиях, и, следовательно, приводит к сжатию ткани.

Здесь, развитие анализа гель сжатия, как сообщается, адаптированный для оценки приобретения сократительной функции в клетках, прошедших ЕМТ. Этот отчет показывает, что этот модифицированный тест предназначен для оценки сократительной в мезенхимальных клетках, подвергшихся EMT.

Protocol

1. Подготовка и культура легких эпителиальных клеток Культура A549 эпителиальные клетки легких человека (прилипший линия клеток) в среде Игла в модификации Дульбекко (DMEM) с добавлением 10% фетальной бычьей сыворотки (FBS), 100 МЕ / мл пенициллина и 100 мкг / мл стрептомицина. Удаляют ср…

Representative Results

Во время EMT, эпителиальные клетки теряют эпителиальные маркеры, такие как E-кадгерина, и получить экспрессию маркеров мезенхимальных, таких как виментин и α-актин гладких мышц 4,5. Инкубация человека A549 легочных эпителиальных клеток с TGF- 1 и TNF-a индуцирует EMT. Появле…

Discussion

Протокол разработан в данном исследовании, включает в себя два этапа. Первый шаг выполняется, чтобы побудить EMT, а второй стадией является анализ гель сжатия. Так как это важно, чтобы подтвердить, что клетки прошли EMT, шаг 2 обеспечивает превосходное дополнение к морфологическим и генных …

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Dr. Tadashi Koyama for technical help. This work was supported in part by JSPS KAKENHI Grant Numbers 23249045, 15K09211, 15K19172; a grant to the Respiratory Failure Research Group from the Ministry of Health, Labour and Welfare, Japan; a grant for research on allergic disease and immunology, Japan.

Materials

DMEM sigma aldrich 11965-092 For A549 medium
FBS GIBCO 10437
Transforming Growth Factor-β1, Human, recombinant Wako Laboratory chemicals 209-16544
Recombinant Human TNF-α R&D systems 210-TA/CF
E-Cadherin (24E10) Rabbit mAb Cell Signaling Technology #3195 1:3000 dilution
Vimentin (D21H3) Rabbit mAb Cell Signaling Technology #5741 1:3000 dilution
Anti-α-Tubulin antibody sigma aldrich T9026 1:10000 dilution
Monoclonal Anti-Actin, α-Smooth Muscle antibody  sigma aldrich A5228 1:10000 dilution
Anti-N-cadherin antibody BD Transduction Laboratories #610920 1:1000 dilution
Anti-Mouse IgG, HRP-Linked Whole Ab Sheep (secondary antibody) GE Healthcare NA931-100UL 1:20000 dilution
Anti-Rabbit IgG, HRP-Linked Whole Ab Donkey (secondary antibody) GE Healthcare NA934-100UL 1:20000 dilution
blocking reagent GE Healthcare RPN418 2% in TBS-T
6 Well Clear Flat Bottom TC-Treated Multiwell Cell Culture Plate, with Lid corning #353046
100 mm cell culture dish TPP #93100
DMEM, powder life technologies 12100-046 For 4×DMEM
type 1 collagen gel Nitta gelatin Cellmatrix type I-A
24 well cell culture plate AGC TECHNO GLASS 1820-024
Gel Documentation System  ATTO AE-6911FXN Gel imager
gel analyzing software ATTO Densitograph, ver. 3.00 analysing software bundled with AE-6911FXN
Trypsin-EDTA (0.05%), phenol red life technologies 25300054
24 Well Plates, Non-Treated IWAKI 1820-024
Trypan Blue Solution, 0.4% life technologies 15250-061
RNA extraction kit Qiagen 74106
reverse transcriptase life technologies 18080044
real time PCR system Stratagene Mx-3000P
SYBR green PCR kit Qiagen 204145
Protease Inhibitor Cocktail (100X) life technologies 78429
PVDF membrane ATTO 2392390
protein assay kit bio-rad 5000006JA 
polyacrylamide gel ATTO 2331810
western blotting detection reagent GE Healthcare RPN2232
cold CCD camera ATTO Ez-Capture MG/ST
Trypsin inhibitor sigma aldrich T9003-100MG
Polyoxyethylene (20)Sorbitan Monolaurate Wako Laboratory chemicals 163-11512
polyoxyethylene (9) octyiphenyl ether Wako Laboratory chemicals 141-08321

References

  1. Wynn, T. A. Cellular and molecular mechanisms of fibrosis. The Journal of pathology. 214, 199-214 (2008).
  2. Hardie, W. D., Glasser, S. W., Hagood, J. S. Emerging concepts in the pathogenesis of lung fibrosis. The American journal of pathology. 175, 3-16 (2009).
  3. Kovacic, J. C., Mercader, N., Torres, M., Boehm, M., Fuster, V. Epithelial-to-mesenchymal and endothelial-to-mesenchymal transition: from cardiovascular development to disease. Circulation. 125, 1795-1808 (2012).
  4. Thiery, J. P., Acloque, H., Huang, R. Y., Nieto, M. A. Epithelial-mesenchymal transitions in development and disease. Cell. 139, 871-890 (2009).
  5. Kalluri, R., Weinberg, R. A. The basics of epithelial-mesenchymal transition. The Journal of clinical investigation. 119, 1420-1428 (2009).
  6. Forino, M., et al. TGFbeta1 induces epithelial-mesenchymal transition, but not myofibroblast transdifferentiation of human kidney tubular epithelial cells in primary culture. International journal of experimental pathology. 87, 197-208 (2006).
  7. Yang, S., et al. Participation of miR-200 in pulmonary fibrosis. The American journal of pathology. 180, 484-493 (2012).
  8. Reynolds, H. Y. Lung inflammation and fibrosis: an alveolar macrophage-centered perspective from the 1970s to 1980s. American journal of respiratory and critical care medicine. 171, 98-102 (2005).
  9. Camara, J., Jarai, G. Epithelial-mesenchymal transition in primary human bronchial epithelial cells is Smad-dependent and enhanced by fibronectin and TNF-alpha. Fibrogenesis & tissue repair. 3, 2 (2010).
  10. Kamitani, S., et al. Simultaneous stimulation with TGF-beta1 and TNF-alpha induces epithelial mesenchymal transition in bronchial epithelial cells. International archives of allergy and immunology. 155, 119-128 (2011).
  11. Mikami, Y., et al. Lymphotoxin beta receptor signaling induces IL-8 production in human bronchial epithelial cells. PloS one. 9, e114791 (2014).
  12. Yamauchi, Y., et al. Tumor necrosis factor-alpha enhances both epithelial-mesenchymal transition and cell contraction induced in A549 human alveolar epithelial cells by transforming growth factor-beta1. Experimental lung research. 36, 12-24 (2010).
  13. Grinnell, F. Fibroblasts, myofibroblasts, and wound contraction. The Journal of cell biology. 124, 401-404 (1994).
  14. Ramos, C., et al. FGF-1 reverts epithelial-mesenchymal transition induced by TGF-{beta}1 through MAPK/ERK kinase pathway . American journal of physiology. Lung cellular and molecular physiology. 299, L222-L231 (2010).
  15. Ren, Z. X., Yu, H. B., Li, J. S., Shen, J. L., Du, W. S. Suitable parameter choice on quantitative morphology of A549 cell in epithelial-mesenchymal transition. Bioscience reports. 35, (2015).
  16. Brinkmann, V., Kinzel, B., Kristofic, C. TCR-independent activation of human CD4+ 45RO- T cells by anti-CD28 plus IL-2: Induction of clonal expansion and priming for a Th2 phenotype. Journal of immunology. 156, 4100-4106 (1996).
  17. Krug, M. S., Berger, S. L. First-strand cDNA synthesis primed with oligo(dT). Methods in enzymology. 152, 316-325 (1987).
  18. Morozumi, M., et al. Simultaneous detection of pathogens in clinical samples from patients with community-acquired pneumonia by real-time PCR with pathogen-specific molecular beacon probes. Journal of clinical microbiology. 44, 1440-1446 (2006).
  19. Smith, P. K., et al. Measurement of protein using bicinchoninic acid. Analytical biochemistry. 150, 76-85 (1985).
  20. Wiechelman, K. J., Braun, R. D., Fitzpatrick, J. D. Investigation of the bicinchoninic acid protein assay: identification of the groups responsible for color formation. Analytical biochemistry. 175, 231-237 (1988).
  21. Ursitti, J. A., Mozdzanowski, J., Speicher, D. W., et al. Electroblotting from polyacrylamide gels. Current protocols in protein science. Chapter 10, Unit 10.7 (2001).
  22. Kricka, L. J., Voyta, J. C., Bronstein, I. Chemiluminescent methods for detecting and quantitating enzyme activity. Methods in enzymology. 305, 370-390 (2000).
  23. Noguchi, S., et al. An integrative analysis of the tumorigenic role of TAZ in human non-small cell lung cancer. Clinical cancer research : an official journal of the American Association for Cancer Research. 20, 4660-4672 (2014).
  24. Kasai, H., Allen, J. T., Mason, R. M., Kamimura, T., Zhang, Z. TGF-beta1 induces human alveolar epithelial to mesenchymal cell transition (EMT). Respiratory research. 6, 56 (2005).
  25. Chen, X., et al. Integrin-mediated type II TGF-beta receptor tyrosine dephosphorylation controls SMAD-dependent profibrotic signaling. The Journal of clinical investigation. 124, 3295-3310 (2014).
  26. Saito, A., et al. An integrated expression profiling reveals target genes of TGF-beta and TNF-alpha possibly mediated by microRNAs in lung cancer cells. PloS one. 8, e56587 (2013).
  27. Dvashi, Z., et al. Protein phosphatase magnesium dependent 1A governs the wound healing-inflammation-angiogenesis cross talk on injury. The American journal of pathology. 184, 2936-2950 (2014).
  28. Hallgren, O., et al. Enhanced ROCK1 dependent contractility in fibroblast from chronic obstructive pulmonary disease patients. Journal of translational medicine. 10, 171 (2012).
  29. Kobayashi, T., et al. Matrix metalloproteinase-9 activates TGF-beta and stimulates fibroblast contraction of collagen gels. American journal of physiology. Lung cellular and molecular physiology. 306, L1006-L1015 (2014).
  30. Horie, M., et al. Histamine induces human lung fibroblast-mediated collagen gel contraction via histamine H1 receptor. Experimental lung research. 40, 222-236 (2014).
  31. Kohyama, T., et al. PGD(2) modulates fibroblast-mediated native collagen gel contraction. American journal of respiratory cell and molecular biology. 27, 375-381 (2002).
  32. Muir, A. B., et al. Esophageal epithelial cells acquire functional characteristics of activated myofibroblasts after undergoing an epithelial to mesenchymal transition. Experimental cell research. 330, 102-110 (2015).
  33. Zhong, Q., et al. Role of endoplasmic reticulum stress in epithelial-mesenchymal transition of alveolar epithelial cells: effects of misfolded surfactant protein. American journal of respiratory cell and molecular biology. 45, 498-509 (2011).
  34. Liu, X. Inflammatory cytokines augments TGF-beta1-induced epithelial-mesenchymal transition in A549 cells by up-regulating TbetaR-I. Cell motility and the cytoskeleton. 65, 935-944 (2008).
check_url/kr/53974?article_type=t

Play Video

Cite This Article
Mikami, Y., Matsuzaki, H., Takeshima, H., Makita, K., Yamauchi, Y., Nagase, T. Development of an In Vitro Assay to Evaluate Contractile Function of Mesenchymal Cells that Underwent Epithelial-Mesenchymal Transition. J. Vis. Exp. (112), e53974, doi:10.3791/53974 (2016).

View Video