Summary

分离培养和成年小鼠心肌细胞转导

Published: August 28, 2016
doi:

Summary

This protocol describes a step-by-step method for the reproducible isolation and long-term culture of adult mouse cardiomyocytes with high yield, purity, and viability.

Abstract

培养的心肌细胞可用于研究是否可使用那些对体内系统补充技术心肌生物学。例如, 在体外培养的纯度和可访问性使得在生化分析,实时成像,和电精细控制。心肌细胞长期培养提供了访问,不能在短期内培养进行额外的实验方法。例如,去分化,细胞周期再入,和细胞分裂的体外调查迄今基本上被限制在大鼠心肌细胞,这似乎是在长期培养更加健壮。然而,转基因小鼠线和发达的疾病模型的丰富的工具集的可用性使鼠标系统的心脏研究的吸引力。尽管一些报道成年小鼠心肌细胞分离存在的,一些研究展示自己的长期培养。这里介绍的,是为一步一步的方法成年小鼠心肌细胞的分离和长期培养。首先,逆行的Langendorff灌注被用来有效地消化用蛋白酶的心脏,接着通过重力沉降纯化。一段去分化下述分离后,将细胞逐渐附着到培养,并且可以是数周培养。腺病毒的细胞裂解物,用于有效地转导的分离的心肌细胞。这些方法提供了一种简单,但功能强大的模型系统来研究生物学的心脏。

Introduction

培养的心肌细胞经常用于监测在体外良好控制的环境中细胞的行为。例如,形态,电气,生化或机械细胞性质可在工程衬底进行研究,在确定的培养基1,2,以及响应于小分子药物,肽,基因调控,3或电刺激。4蜂窝含量可以还使用定义共培养物来控制。5 这些体外实验是在大的药物或遗传筛选有用和体内方法各种类型涉及心肌生物学调查补充。

长期的文化使那些需要长的时间内,实现表型改变的实验途径。适时地例子是成年哺乳动物心肌细胞增殖,其中去分化,细胞周期再入,和细胞分裂典型地研究过本身的veral天至数周,6,7这里,延长培养时间有利于遗传操作,7,8分化的功能( 例如,肌节拆卸)9和潜在的转录分化。6随后细胞周期重新进入和细胞分裂,需要更长的时间培养观察,特别是如果多轮师都是实验性的目标。心肌细胞周期的重要性是中央在心脏再生,其中,预先存在的心肌细胞的分化和增殖已显示负责在斑马鱼和新生小鼠心脏再生几个最近的关键科学著作。10-12。因此,有可能刺激分化和细胞周期重新进入哺乳动物成年心肌留在人的心脏再生13-15的一个关键问题

I N体外实验研究哺乳动物心脏的细胞周期肌细胞已主要使用鼠源,由于其相对容易长期培养的相比小鼠模型16然而,鼠系统提供的充分表征的基因的工具和疾病模型是在体外 和体内有用资源丰富协议。例如,基于Cre的谱系追踪,使预先存在的心肌细胞的鉴定如在体内的新生小鼠心脏再生心肌的一个来源。12 体外谱系追踪新生小鼠的心肌细胞的研究已启用与基质相互作用的检查细胞通过共培养成纤维细胞。5然而,由于它的挑战,17报道很少成年小鼠心肌细胞的分离和长期培养的存在。18,19

单独短期培养存活成年小鼠心肌细胞的分离被称为是一个具有挑战性的任务。这protocOL提供了有关如何实现从可用于短期和长期的调查成年小鼠心肌细胞存活一步一步的指导。使用此协议分离的心肌细胞可以与腺病毒载体20,21和培养周有效地转。这些方法提供了强大的系统来研究生物学心肌体外

本文所描述的方法是基于从使用的Langendorff逆行灌注的变化之前的作品几个元素。18,22虽然几个协议已发表 ​​关于短期培养和研究中,23-25 ​​的优点的成年小鼠心肌细胞的隔离该协议是能够培养分离的心肌细胞长期的。这将是在涉及异位基因表达并且需要延长的时间段,例如在细胞的初始化策略细胞过程的研究是有用的。

Protocol

这里列出的所有程序已获得批准的机构动物使用及护理委员会在加州大学旧金山分校。 注:简单地说,来自小鼠胸腔中提取的心脏后,冠状动脉逆行灌注被用来有效地消化用胶原酶和蛋白酶XIV细胞外基质。然后心室被隔离,机械分离并过滤成一个单一的细胞悬浮液。重力沉降进行分离的心肌细胞,这是从基质细胞样的成纤维细胞和内皮细胞可以通过高密度分离?…

Representative Results

野生型成人ICR(CD1)小鼠心脏通常产生从一个成功的隔离500​​,000到1,000,000心肌细胞。分离后立即将细胞保持大多棒状外观( 图3A)与完整肌节和可用于涉及心肌收缩功能研究。棒状心肌(90%以上)的高百分比是有效灌注和消化的指示。可行的心肌细胞将是大的(〜100 – 200微米长)和出现有在光照下( 图3A)的急剧外膜。免疫染色特定心肌肌节…

Discussion

分离出心肌细胞的整体健康取决于该协议的几个重要方面。首先,从心脏提取到灌注的时间是非常关键的,应在5分钟以下进行。钙的除去有助于解离细胞-细胞相互作用,但能细胞健康长期负面影响。29-32。因此,我们发现它足以通过EGTA灌注的最初几分钟期间去除钙(乙二醇四乙酸)螯合, 22但很快消化和随后的步骤中恢复钙。

利用蛋白酶十四大大提高比单?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

该项目由加州大学旧金山分校计划突破生物医学研究(由桑德勒基金会提供部分资助),美国国立卫生研究院途径来独立奖(R00HL114738)和爱德华马林克罗特小基金会。 JJ是由来自美国国立卫生研究院(T32HL007731)的博士后奖学金支持。作者在此工作,并不一定代表美国国立卫生研究院的官方意见的内容负责。

Materials

Equipment
Heated water jacket Radnoti 158831
Circulating heated water bath, Isotemp Fisher Scientific 3013
Laboratory pump Watson-Marlow 323
Hemostats Exelta 63042-090
Tissue forceps VWR 470128034
Dumont #7 curved forceps FST 91197-00
Dumont #5 fine forceps FST 11251-20
Small dissection scissors VWR 470128034
Extra fine bonn scissors FST 14084-08
Fine spring scissors FST 91500-09
Name Company Catalog Number Comments
Materials
NaCl Sigma S9888
KCl Sigma P9541
Na2HPO4-7H2O Fisher S25837
MgSO4-7H2O Fisher S25414
Taurine Sigma 86329
Butane dione monoxime (BDM) Sigma B0753
HEPES Fisher  BP310100
Glucose Sigma G-7021
Insulin Novo Nordisk 393153
EGTA Amresco 0732-288
Protease, type XIV Sigma P5147
Collagenase II Worthington LS004176
MEM Corning 15-010-CV
FBS, heat inactivated JRS 43613
Primocin Invitrogen NC9141851
Ethyl Carbamate Alfa Aesar AAA44804-18
215 micron mesh Component supply U-CMN-215-A
20 G blunt ended needle Becton Dickinson 305183
20 G beveled needle Becton Dickinson 305176
Lab tape VWR 89097-990
Surgical tape 3M 1527-0
Silk suture, 7-0 Teleflex 15B051000
Mouse anti-alpha-actinin antibody Sigma A7811
Alexa Fluor 488 goat anti-mouse IgG1 antibody Thermo Fisher A21121

References

  1. Patel, A. K., Celiz, A. D., et al. A defined synthetic substrate for serum free culture of human stem cell derived cardiomyocytes with improved functional maturity identified using combinatorial materials microarrays. Biomaterials. 61, 257-265 (2015).
  2. Mathur, A., Loskill, P., et al. Human iPSC-based Cardiac Microphysiological System For Drug Screening Applications. Sci Rep. 5, 8883 (2015).
  3. Mahmoud, A. I., Kocabas, F., et al. Meis1 regulates postnatal cardiomyocyte cell cycle arrest. Nature. 497 (7448), 249-253 (2013).
  4. Baumgartner, S., Halbach, M., et al. Electrophysiological and morphological maturation of murine fetal cardiomyocytes during electrical stimulation in vitro. J Cardiovasc Pharmacol Ther. 20 (1), 104-112 (2015).
  5. Ieda, M., Tsuchihashi, T., et al. Cardiac fibroblasts regulate myocardial proliferation through beta1 integrin signaling. Dev Cell. 16 (2), 233-244 (2009).
  6. Zhang, Y., Li, T. S., et al. Dedifferentiation and proliferation of mammalian cardiomyocytes. PLoS One. 5 (9), e12559 (2010).
  7. Engel, F. B., Schebesta, M., et al. p38 MAP kinase inhibition enables proliferation of adult mammalian cardiomyocytes. Gene Dev. 19 (10), 1175-1187 (2005).
  8. Sakurai, T., Lanahan, A., Woolls, M. J., Li, N., Tirziu, D., Murakami, M. Live cell imaging of primary rat neonatal cardiomyocytes following adenoviral and lentiviral transduction using confocal spinning disk microscopy. J Vis Exp. (88), e51666 (2014).
  9. Ahuja, P., Perriard, E., Perriard, J. C., Ehler, E. Sequential myofibrillar breakdown accompanies mitotic division of mammalian cardiomyocytes. J Cell Sci. 117 (Pt 15), 3295-3306 (2004).
  10. Kikuchi, K., Holdway, J. E., et al. Primary contribution to zebrafish heart regeneration by gata4(+) cardiomyocytes. Nature. 464 (7288), 601-605 (2010).
  11. Jopling, C., Sleep, E., Raya, M., Martì, M., Raya, A., Izpisúa Belmonte, J. C. Zebrafish heart regeneration occurs by cardiomyocyte dedifferentiation and proliferation. Nature. 464 (7288), 606-609 (2010).
  12. Porrello, E. R., Mahmoud, A. I., et al. Transient Regenerative Potential of the Neonatal Mouse Heart. Science. 331 (6020), 1078-1080 (2011).
  13. Heallen, T., Morikawa, Y., et al. Hippo signaling impedes adult heart regeneration. Development. 140 (23), 4683-4690 (2013).
  14. Lin, Z., Zhou, P., et al. Pi3kcb links Hippo-YAP and PI3K-AKT signaling pathways to promote cardiomyocyte proliferation and survival. Circ Res. 116 (1), 35-45 (2015).
  15. Zebrowski, D. C., Vergarajauregui, S., et al. Developmental alterations in centrosome integrity contribute to the post-mitotic state of mammalian cardiomyocytes. eLife. 4, e05563 (2015).
  16. Schluter, K. D., Piper, H. M. . Practical Methods in Cardiovascular Research. , (2005).
  17. Zhou, Y. Y., Wang, S. Q., et al. Culture and adenoviral infection of adult mouse cardiac myocytes: methods for cellular genetic physiology. Am J Physiol Heart Circ Phys. 279 (1), H429-H436 (2000).
  18. Kruppenbacher, J. P., May, T., Eggers, H. J., Piper, H. M. Cardiomyocytes of adult mice in long-term culture. Naturwissenschaften. 80 (3), 132-134 (1993).
  19. Fredj, S., Bescond, J., Louault, C., Potreau, D. Interactions between cardiac cells enhance cardiomyocyte hypertrophy and increase fibroblast proliferation. Journal of Cellular Physiology. 202 (3), 891-899 (2005).
  20. Li, Z., Sharma, R. V., Duan, D., Davisson, R. L. Adenovirus-mediated gene transfer to adult mouse cardiomyocytes is selectively influenced by culture medium. J Gene Med. 5 (9), 765-772 (2003).
  21. Luo, J., Deng, Z. L., et al. A protocol for rapid generation of recombinant adenoviruses using the AdEasy system. Nat Protoc. 2 (5), 1236-1247 (2007).
  22. Shioya, T. A simple technique for isolating healthy heart cells from mouse models. J Physiol Sci. 57 (6), 327-335 (2007).
  23. Li, D., Wu, J., Bai, Y., Zhao, X., Liu, L. Isolation and culture of adult mouse cardiomyocytes for cell signaling and in vitro cardiac hypertrophy. J Vis Exp. (87), e51357 (2014).
  24. Wolska, B. M., Solaro, R. J. Method for isolation of adult mouse cardiac myocytes for studies of contraction and microfluorimetry. Am J Physiol Heart Circ Phys. 271 (3), H1250-H1255 (1996).
  25. Pinz, I., Zhu, M., Mende, U., Ingwall, J. S. An improved isolation procedure for adult mouse cardiomyocytes. Cell Biochem Biophys. 61 (1), 93-101 (2011).
  26. Di Stefano, V., Giacca, M., Capogrossi, M. C., Crescenzi, M., Martelli, F. Knockdown of cyclin-dependent kinase inhibitors induces cardiomyocyte re-entry in the cell cycle. J Biol Chem. 286 (10), 8644-8654 (2011).
  27. Malouf, N. N., McMahon, D., Oakeley, A. E., Anderson, P. A. A cardiac troponin T epitope conserved across phyla. J Biol Chem. 267 (13), 9269-9274 (1992).
  28. Ehler, E., Moore-Morris, T., Lange, S. Isolation and culture of neonatal mouse cardiomyocytes. J Vis Exp. (79), e50154 (2013).
  29. Daly, M. J., Elz, J. S., Nayler, W. G. Contracture and the calcium paradox in the rat heart. Circ Res. 61 (4), 560-569 (1987).
  30. Piper, H. Culturing of calcium stable adult cardiac myocytes. J Mol Cell Cardiol. 14 (7), 397-412 (1982).
  31. Ashraf, M. Correlative studies on sarcolemmal ultrastructure, permeability, and loss of intracellular enzymes in the isolated heart perfused with calcium-free medium. Am J Pathol. 97 (2), 411-432 (1979).
  32. Piper, H. The calcium paradox revisited An artefact of great heuristic value. Cardiovasc Res. 45 (1), 123-127 (2000).
  33. Higuchi, H., Takemori, S. Butanedione monoxime suppresses contraction and ATPase activity of rabbit skeletal muscle. J Biochem. 105 (4), 638-643 (1989).
  34. Rother, J., Richter, C., et al. Crosstalk of cardiomyocytes and fibroblasts in co-cultures. Open biology. 5 (6), 150038 (2015).
  35. Fujio, Y., Nguyen, T., Wencker, D., Kitsis, R. N., Walsh, K. Akt Promotes Survival of Cardiomyocytes In Vitro and Protects Against Ischemia-Reperfusion Injury in Mouse Heart. Circulation. 101 (6), 660-667 (2000).
  36. Dambrot, C., Braam, S. R., Tertoolen, L. G. J., Birket, M., Atsma, D. E., Mummery, C. L. Serum supplemented culture medium masks hypertrophic phenotypes in human pluripotent stem cell derived cardiomyocytes. Journal of cellular and molecular medicine. 18 (8), 1509-1518 (2014).
  37. Karliner, J. S., Simpson, P. C., Taylor, J. E., Honbo, N., Woloszyn, W. Adrenergic receptor characteristics of cardiac myocytes cultured in serum-free medium: Comparison with serum-supplemented medium. Biochemical and Biophysical Research Communications. 128 (1), 376-382 (1985).
  38. Zheng, X., Baker, H., Hancock, W. S., Fawaz, F., McCaman, M., Pungor, E. Proteomic analysis for the assessment of different lots of fetal bovine serum as a raw material for cell culture. Part IV. Application of proteomics to the manufacture of biological drugs. Biotechnology progress. 22 (5), 1294-1300 (2006).
  39. Soonpaa, M. H., Kim, K. K., Pajak, L., Franklin, M., Field, L. J. Cardiomyocyte DNA synthesis and binucleation during murine development. Am J Physiol. 271 (5 Pt 2), H2183-H2189 (1996).
  40. Engel, F. B., Hsieh, P. C. H., Lee, R. T., Keating, M. T. FGF1/p38 MAP kinase inhibitor therapy induces cardiomyocyte mitosis, reduces scarring, and rescues function after myocardial infarction. P Natl Acad Sci USA. 103 (42), 15546-15551 (2006).
  41. Tian, Y., Liu, Y., et al. A microRNA-Hippo pathway that promotes cardiomyocyte proliferation and cardiac regeneration in mice. Sci Transl Med. 7 (279), 279ra38 (2015).
  42. Soonpaa, M. H., Koh, G. Y., et al. Cyclin D1 overexpression promotes cardiomyocyte DNA synthesis and multinucleation in transgenic mice. J Clin Invest. 99 (11), 2644-2654 (1997).
  43. Stewart, S., Stankunas, K. Limited dedifferentiation provides replacement tissue during zebrafish fin regeneration. Dev Biol. 365 (2), 339-349 (2012).
  44. Wu, C. H., Huang, T. Y., Chen, B. S., Chiou, L. L., Lee, H. S. Long-Duration Muscle Dedifferentiation during Limb Regeneration in Axolotls. PLoS One. 10 (2), e0116068 (2015).
  45. Nag, A. C., Lee, M. L., Kosiur, J. R. Adult cardiac muscle cells in long-term serum-free culture: myofibrillar organization and expression of myosin heavy chain isoforms. In vitro cellular & developmental biology journal of the Tissue Culture Association. 26 (5), 464-470 (1990).
  46. Lian, X., Hsiao, C., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. P Natl Acad Sci USA. 109 (27), E1848-E1857 (2012).
  47. Sohal, D. S., Nghiem, M., et al. Temporally Regulated and Tissue-Specific Gene Manipulations in the Adult and Embryonic Heart Using a Tamoxifen-Inducible Cre Protein. Circ Res. 89 (1), 20-25 (2001).
  48. Hsieh, P. C. H., Segers, V. F. M., et al. Evidence from a genetic fate-mapping study that stem cells refresh adult mammalian cardiomyocytes after injury. Nat Med. 13 (8), 970-974 (2007).
check_url/kr/54012?article_type=t

Play Video

Cite This Article
Judd, J., Lovas, J., Huang, G. N. Isolation, Culture and Transduction of Adult Mouse Cardiomyocytes. J. Vis. Exp. (114), e54012, doi:10.3791/54012 (2016).

View Video