Summary

PGR - 블루 플라스미드와 골든 게이트 어셈블리를 사용하여 터미네이터의 신속한 확인

Published: April 25, 2016
doi:

Summary

This protocol utilizes Golden Gate Assembly and the plasmid pGR-blue to rapidly quantify the strength of terminators found in silico.

Abstract

The goal of this protocol is to allow for the rapid verification of bioinformatically identified terminators. Further, the plasmid (pGR-Blue) is designed specifically for this protocol and allows for the quantification of terminator efficiency. As a proof of concept, six terminators were bioinformatically identified in the mycobacteriophage Bernal13. Once identified, terminators were then made as oligonucleotides with the appropriate sticky ends and annealed together. Using Golden Gate Assembly (GGA), terminators were then cloned into pGR-Blue. Under visible light, false positive colonies appear blue and positively transformed colonies are white/yellow. After induction of an arabinose inducible promoter (pBad) with arabinose, colony strength can be determined by measuring the ratio of green fluorescent protein (GFP) produced to red fluorescent protein (RFP) produced. With pGR-Blue, the protocol can be completed in as little as three days and is ideal in an educational setting. Additionally, results show that this protocol is useful as a means for understanding in silico predictions of terminator efficiency related to the regulation of transcription.

Introduction

Large synthetic biology projects necessitate the use of highly effective transcription terminators to help regulate gene expression. Identification of novel terminators requires bioinformatic analysis of novel genomes. However, as increasing amounts of bioinformatic software are developed, each with a unique algorithm utilized for prediction, more discrepancy between putative results occurs. Because this process is somewhat subjective and is done in silico, these predictions need biological confirmation.1 Additionally, the volume of putative terminators identified through in-silico analysis requires the use of cloning strategies that can be completed in a relatively short time frame.

The PGR-Blue plasmid is a modification of the PGR plasmid that has been redesigned to use Golden Gate Assembly (GGA) to simplify the cloning procedure by allowing for all reaction steps to be simultaneously performed in one micro-centrifuge tube.2,3 Color selection was incorporated into the plasmid to increase the ease of identifying positive colonies. A successful ligation should be white/yellow in visible light and fluoresce green under blue (450 nm) or ultraviolet (UV) light when grown on plates containing arabinose. Because uncut pGR-blue contains a blue chromo protein (amilCP), colonies containing an unmodified plasmid are blue under visible light. This simplification along with the streamlined protocol allows researchers to proceed from bioinformatic identification to biological confirmation in three to four days. The design nature of this system can be beneficial both in the research lab and in educational settings.

The pGR-Blue plasmid allows for quantification of terminator strength.4 A single arabinose inducible promoter is used to produce green fluorescent protein (GFP) and red fluorescent protein (RFP). The terminator is cloned into the plasmid after the GFP sequence but before the RFP sequence, thus stopping the transcription of the RFP protein. The strength of the terminator is determined by the ratio of GFP produced to RFP produced.

The Vision and Change5 report suggested that Science, Technology, Engineering and Math (STEM) education incorporate research based experiences into the classroom.6 However, this requires the development of protocols that can be done by students with limited skill sets in a defined time frame. While the protocol can be accomplished in as little as three days, it was also designed so that each major step could be accomplished in a separate weekly (2-3 hr) lab period to create a Course Research Experience (CRE). When used in this manner, the procedure will take between three and six weeks and is appropriate for both introductory and advanced courses in Genetics, Cell Biology or Bioinformatics.

Protocol

1. 설계와 적절한 스티커 엔드와 주문 올리고 뉴클레오티드 자유롭게 사용할 수 온라인 프로그램을 사용하여 게놈 분석을 통해 잠재적 인 RHO 독립 종결을 확인합니다. (7) 이중 가닥 DNA로 작업 할 때, 터미네이터의 방향 테스트 할 결정합니다. 7 PGR – 블루 플라스미드는 상단 (정 가닥)의 방향 '3'이 5 결찰 터미네이터를 확인합니다. , 무료 온라인 소프트?…

Representative Results

이 프로토콜은 골든 게이트 조립 (그림 2)를 사용하여 GFP 및 RFP 사이에 결찰 터미네이터와 PGR – 블루를 포함하는 세포를 생성합니다. 결찰 삽입물을 함유하는 포지티브 콜로니 색에 기초하여 선택 될 수있다. 가시 광선에서 긍정적 인 식민지 / 흰색, 노란색되며 오탐 (false positive)은 37 ° C (그림 3)에서 배양의 18 ~ 20 시간 후 푸른 식민지를 생성합니?…

Discussion

이 프로토콜에서 가장 중요한 단계는 순서에 적절한 올리고 뉴클레오티드 디자인 사전이다. 올리고 뉴클레오티드는 적합한 접착 말단은 GGA의 혼입이 가능하도록 상부 및 하부 두 가닥의 5 '말단에 추가한다. 또한, 오른쪽에 직면의 왼쪽에 직면 터미네이터 (하단 가닥에 전사를 중지 터미네이터)의 방향을 전환하는 것이 중요하다 GFP 및 RFP 발현이 직면 오른쪽에 있기 때문에 (위의 가닥을 터미?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

유전체학 및 진화 과학을 전진 파지 사냥꾼 (SEA-파지) 프로그램 – 저자는 액티브 교육에 대한 게놈 컨소시엄 (GCAT)와 HHMI – 과학 교육 얼라이언스와 말콤 캠벨 토드 Eckdahl을 인정하고 싶습니다.

이 프로젝트는 연구 자원을위한 국립 센터 (P20RR016460)와 국립 보건원에서 일반 의료 과학 국립 연구소 (P20GM103429)에서 보조금에 의해 지원되었다. 이 연구는 부여 번호의 IIA-1457888 아래에있는 국립 과학 재단 (National Science Foundation)에 의해 부분적으로 지원되었다. 또한 기관 (우아 치타 침례 대학) 기금은 JD 패터슨 여름 연구 활동을 통해 제공되었다.

Materials

pGR-Blue Plasmid Addgene 68374
pGR-Plasmid Addgene 46002
AeraSeal-(Sterile Sheets) Excel Scientific BS-25 Sterile Sheets only
10X T4 DNA ligase Buffer NEB
BsaI-HF NEB R3535S The non-HF enzyme will work but is less heat stable. 
NEB Golden Gate Assembly Mix NEB E1600S Commerial Master Mix refered to in the protocol.
T4 DNA ligase NEB M0202S
Round Microcentrifuge Floating Rack Nova Tech International F18875-6401
Ampicillin sodium salt Sigma Aldrich A9518
L-(+)-Arabinose Sigma Aldrich A-3256 D-Arabinose will not induce the pBAD promoter
Luria Base (LB) – Broth, Miller Sigma Aldrich L1900
Luria Base (LB) – Agar , Miller  Sigma Aldrich L2025
Tecan-Infinite M200 Plate Reader Tecan
Mix & Go Competent Cells – Strain JM109 Zymo Research T3005 Use company recommended transformation protocol
ApE: A plasmid editor-software http://biologylabs.utah.edu/jorgensen/wayned/ape/
Tris-HCl, Molecular Grade Promega H5121
Sodium Chloride (Crystalline/Biological, Certified) Fisher Chemical S671
Comercial Oligonucleotide synthesis Integrated DNA Technologies (IDT) http://www.idtdna.com/site
Microtest Tissue Culture Plates- 96 well (Sterile) Falcon 35-3072
mycobacteriophage "Bernal13" Genebank KJ510413
Nuclease Free Water Integrated DNA Technologies (IDT) IDT004
Sterile, L-shaped Hockey-Stick Cell Life Science Products 6444-S1
Nano-Drop 2000c UV-Vis Spectrometer Thermo Scientific 2000c
ARNold: a web tool for the prediction of Rho-independent transcription terminators. http://rna.igmors.u-psud.fr/

References

  1. Li, J., Zhang, Y. Relationship between promoter sequence and its strength in gene expression. Eur Phys J E Soft Matter. 37 (9), (2014).
  2. Engler, C., Kandzia, R., Marillonnet, S. A one pot, one step, precision cloning method with high throughput capability. PLoS One. 3 (11), e3647 (2008).
  3. Lampropoulos, A., et al. GreenGate—a novel, versatile, and efficient cloning system for plant transgenesis. PLoS One. 8 (12), e83043 (2013).
  4. Chen, Y. J., et al. Characterization of 582 natural and synthetic terminators and quantification of their design constraints. Nat Methods. 10 (7), 659-664 (2013).
  5. Woodin, T., Carter, V. C., Fletcher, L. Vision and change in biology undergraduate education, a call for action–initial responses. CBE Life Sci Educ. 9 (2), 71-73 (2010).
  6. Vasaly, H. L., Feser, J., Lettrich, M. D., Correa, K., Denniston, K. J. Vision and change in the biology community: snapshots of change. CBE Life Sci Educ. 13 (1), 16-20 (2014).
  7. Naville, M., Ghuillot-Gaudeffroy, A., Marchais, A., Gautheret, D. ARNold: a web tool for the prediction of Rho-independent transcription terminators. RNA Biol. 8 (1), 11-13 (2011).
  8. Campbell, A. M., et al. pClone: Synthetic Biology Tool Makes Promoter Research Accessible to Beginning Biology Students. CBE Life Sci Educ. 13 (2), 285-296 (2014).
  9. Rhee, J. I., et al. Influence of the medium composition and plasmid combination on the growth of recombinant Escherichia coli JM109 and on the production of the fusion protein EcoRI::SPA. J Biotechnol. 55 (2), 69-83 (1997).
  10. Dirla, S., Chien, J. Y., Schleif, R. Constitutive mutations in the Escherichia coli AraC protein. J Bacteriol. 191 (8), 2668-2674 (2009).
  11. Schleif, R. Regulation of the L-arabinose operon of Escherichia coli. Trends Genet. 16 (12), 559-565 (2000).
  12. Kosuri, S., et al. Composability of regulatory sequences controlling transcription and translation in Escherichia coli. Proc Natl Acad Sci U S A. 110 (34), 14024-14029 (2013).
  13. Sharon, E., et al. Inferring gene regulatory logic from high-throughput measurements of thousands of systematically designed promoters. Nat Biotechnol. 30 (6), 521-530 (2012).
check_url/kr/54064?article_type=t

Play Video

Cite This Article
Bradshaw, J. C., Gongola, A. B., Reyna, N. S. Rapid Verification of Terminators Using the pGR-Blue Plasmid and Golden Gate Assembly. J. Vis. Exp. (110), e54064, doi:10.3791/54064 (2016).

View Video