Summary

清洁取样和痕量金属研究河和河口水域分析

Published: July 01, 2016
doi:

Summary

Special care using “clean techniques” is required to properly collect and process water samples for trace metal studies in aquatic environments. A protocol for sampling, processing, and analytical procedures with the aim of obtaining reliable environmental monitoring data and results with high sensitivity for detailed trace metal studies is presented.

Abstract

Most of the trace metal concentrations in ambient waters obtained a few decades ago have been considered unreliable owing to the lack of contamination control. Developments of some techniques aiming to reduce trace metal contamination in the last couple of decades have resulted in concentrations reported now being orders of magnitude lower than those in the past. These low concentrations often necessitate preconcentration of water samples prior to instrumental analysis of samples. Since contamination can appear in all phases of trace metal analyses, including sample collection (and during preparation of sampling containers), storage and handling, pretreatments, and instrumental analysis, specific care needs to be taken in order to reduce contamination levels at all steps. The effort to develop and utilize “clean techniques” in trace metal studies allows scientists to investigate trace metal distributions and chemical and biological behavior in greater details. This advancement also provides the required accuracy and precision of trace metal data allowing for environmental conditions to be related to trace metal concentrations in aquatic environments.

This protocol that is presented here details needed materials for sample preparation, sample collection, sample pretreatment including preconcentration, and instrumental analysis. By reducing contamination throughout all phases mentioned above for trace metal analysis, much lower detection limits and thus accuracy can be achieved. The effectiveness of “clean techniques” is further demonstrated using low field blanks and good recoveries for standard reference material. The data quality that can be obtained thus enables the assessment of trace metal distributions and their relationships to environmental parameters.

Introduction

人们已经普遍认识到天然水域取得了一些微量金属的结果可能是由于从样本收集,处理和决心1,2过程中应用的技术所产生的不足,文物不准确的。真正的浓度(亚纳米到纳米范围内的地表水3)溶解的微量金属元素是要比以前发表的值低的到现在为止两个数量级。同样的情况在海洋化学凡在大洋水域中溶解的接受微量金属浓度已经超过过去40年减少了数量级左右改进取样和分析方法被引入被发现。已作出努力以改善与“清洁技术”旨在减少或消除微量金属污染的整个痕量金属分析4-8的各个阶段的发展的数据质量。对于重金属含量在环境的决心水平,富集通常需要。离子交换技术的8-12已普遍应用于有效富集。

污染可从容器的壁出现,容器中,取样器,样品处理和存储,以及样品保存和分析7,13的清洗。使用进行了最近的清洁方法,所有的研究表明,在自然水域中重金属含量一般远低于常规方法7检出限。既然承认在90年代初疑微量金属的数据,清洁方法已被纳入美国EPA(环保局)准则痕量金属检测14和美国地质调查局推行清洁方法,为他们的水质监测项目15个 。需要在所有的项目中被采用,以创造一个坚定而准确的数据基础痕量金属研究清洁方法。

<p类=“jove_content”>原则上,用于痕量金属测定水样应该用特殊的材料组成,具有仪器分析之前,存储和处理使用适当的容器和设备正确,适当的采样齿轮进行收集。由于悬浮颗粒物(SPM)可以进行在样本储存期的变化和改变水的成分,从水样SPM的快速分离是在水生环境痕量金属研究一种常见的做法。为在自然水域溶解痕量金属浓度的测定,过滤是必需的,并在在线过滤技术是合适的和有效的。

分布和在水生环境中,如地表水和地下水的微量金属的行为可以通过天然( 例如 ,风化)和人为的影响( 例如 ,废水流出物)的因素,以及其它环境条件,如重gional地质,形态,土地利用,植被,气候和16-19。然后这会导致诸如悬浮颗粒物浓度(SPM),溶解的有机碳(DOC),人为的配体( 例如 ,乙二胺四乙酸,EDTA)的盐,氧化还原电位和pH值17-20的物理化学参数的差异。因此,准确和相关的痕量金属研究需要痕量金属分析的样品的适当的收集以及相关因素和参数的确定。

Protocol

1.取样准备取样采样器组合 4米长的氟化乙烯丙烯(FEP)管(ID0.635厘米,外径0.95厘米或类似的)连接到1.5米耐化学性的硅树脂泵浦管(外径0.635厘米)。 插入聚丙烯Y连接到泵送管和50厘米泵送管连接到一个出口,和一个0.45μm的胶囊型过滤器(由一20厘米泵送管)到另一个。 组装在一个干净的房间(工作台)的管路它们清洗后(见下文),并在组装存储在聚乙烯袋…

Representative Results

随着时代的发展和使用的“清洁技术”,现在清楚地认识到,为了获得在室温水域准确痕量金属浓度,水样品中的微量金属的富集是一种常见的做法。虽然在自然水域中的微量金属大部分的水质标准是在低微克/ L范围内,需要较低的检测限调查在空气中的含量在水生环境的痕量金属地球化学和生物效应。 与以下使用的“清洁?…

Discussion

在自然水域中获取可靠的微量金属数据需要样品的采集,处理,预处理和分析旨在减少污染期间强调呵护备至。跟踪中获得的天然水域重金属含量中发现,该浓度可以比以前报道的低几个数量级过去二十年来使用“清洁技术”。在水中的微量金属水质标准时,微量金属水平准确测量造成有害影响人类和高等生物更好的评估,现在更容易评估。生物利用度和在水生环境痕量金属的毒性需要在较低浓?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors thank Drs. Bobby J. Presley, Robert Tayloy, Paul Boothe, Mr. Bryan Brattin, and Mr. Mike Metcalf for their assistance during the laborious field sampling and lab work for the practical development and application of “clean techniques”.

Materials

Nitric Acid Seastar Chemicals Baseline grade
Ammonium hydroxide Seastar Chemicals Baseline grade
Acetic Acid Seastar Chemicals Baseline grade
Nitric Acid J. T. Baker 9601-05 Reagent grade
Hydrochloric acid J. T. Baker 9530-33 Reagent grade
Chromatographic columns Bio-Rad 7311550  Poly-Prep
Column stack caps Bio-Rad 7311555
Cap connectors (female luers) Bio-Rad 7318223
2-way stopcocks Bio-Rad 7328102
Cation exchange resin Bio-Rad 1422832  Chelex-100
Portable sampler (sampling pump) Cole Palmer EW-07571-00
FEP tube Cole Palmer EW-06450-07 6.4 mm I.D., 9.5 mm O.D.
Pumping tube Cole Palmer EW-06424-24 6.4 mm I.D. C-Flex
Capsule filter (0.4 mm) Fisher Scientific WP4HY410F0 polypropylene casing
1 L low density polyethylene bottle NALGE NUNC INTERNATIONAL 312088-0032
1 L (or 500 ml) FEP bottle NALGE NUNC INTERNATIONAL 381600-0032

References

  1. Taylor, H. E., Shiller, A. M. Mississippi River Methods Comparison Study: Implications for water quality monitoring of dissolved trace elements. Environmental Science and Technology. 29, 1313-1317 (1995).
  2. Windom, H. L., Byrd, J. T., Smith, R. G., Huan, F. Inadequacy of NASQAN data for assessing metal trends in the nation’s rivers. Environmental Science and Technology. 25 (6), 1137-1142 (1991).
  3. Mason, R. P. . Trace Metals in Aquatic Systems. , (2013).
  4. Wen, L. -. S., Santschi, P., Gill, G., Paternostro, C. Estuarine trace metal distributions in Galveston Bay: importance of colloidal forms in the speciation of the dissolved phase. Marine Chemistry. 63, 185-212 (1999).
  5. Wen, L. -. S., Stordal, M. C., Tang, D., Gill, G. A., Santschi, P. H. An ultraclean cross-flow ultrafiltration technique for the study of trace metal phase speciation in seawater. Marine Chemistry. 55, 129-152 (1996).
  6. Benoit, G. Clean technique measurement of Pb, Ag, and Cd in freshwater: A redefinition of metal pollution. Environmental Science and Technology. 28, 1987-1991 (1994).
  7. Benoit, G., Hunter, K. S., Rozan, T. F. Sources of trace metal contamination artifacts during collection, handling, and analysis of freshwater. Analytical Chemistry. 69 (6), 1006-1011 (1997).
  8. Jiann, K. -. T., Presley, B. J. Preservation and determination of trace metal partitioning in river water by a two-column ion exchange method. Analytical Chemistry. 74 (18), 4716-4724 (2002).
  9. Fardy, J. J., Alfassi, Z. B., Wai, C. M. . Preconcentration Techniques for Trace Elements. , 181-210 (1992).
  10. Pai, S. -. C. Pre-concentration efficiency of Chelex-100 resin for heavy metals in seawater. Part 2. Distribution of heavy metals on a Chelex-100 column and optimization of the column efficiency by a plate simulation method. Analytica Chimica Acta. 211, 271-280 (1988).
  11. Pai, S. -. C., Fang, T. -. H., Chen, C. -. T. A., Jeng, K. -. L. A low contamination Chelex-100 technique for shipboard pre-concentration of heavy metals in seawater. Marine Chemistry. 29, 295-306 (1990).
  12. Pai, S. -. C., Whung, P. -. Y., Lai, R. -. L. Pre-concentration efficiency of Chelex-100 resin for heavy metals in seawater. Part 1. Effects of pH and salts on the distribution ratios of heavy metals. Analytica Chimica Acta. 211, 257-270 (1988).
  13. Salbu, B., Oughton, D. H., Salbu, B., Steinnes, E. . Trace Elements in Natural Waters. , 41-69 (1995).
  14. . U.S. Environmental Protection Agency. Method 1669. Sampling ambient water for trace metals at EPA Water Quality criteria levels Available from: https://www3.epa.gov/caddis/pdf/Metals_Sampling_EPA_method_1669.pdf (1996)
  15. Horowitz, A. J., et al. Problems associated with using filtration to define dissolved trace metal concentrations in natural water samples. Environmental Science and Technology. 30, 954-963 (1996).
  16. Cortecci, G., et al. Geochemistry of trace elements in surface waters of the Arno River Basin, northern Tuscany, Italy. Applied Geochemistry. 24 (5), 1005-1022 (2009).
  17. Markich, S. J., Brown, P. L. Relative importance of natural and anthropogenic influences on the fresh surface water chemistry of the Hawkesbury-Nepean River, south-eastern Australia. The Science of the Total Environment. 217, 201-230 (1998).
  18. Shafer, M. M., Overdier, J. T., Hurley, J. P., Armstrong, D., Webb, D. The influence of dissolved organic carbon, suspended particles, and hydrology on the concentration, partitioning and variability of trace metals in two contrasting Wisconsin watersheds (U.S.A.). Chemical Geology. 136, 71-97 (1997).
  19. Warren, L. A., Haack, E. A. Biogeochemical controls on metal behaviour in freshwater environments. Earth-Science Reviews. 54, 261-320 (2001).
  20. Jiann, K. -. T., Santschi, P. H., Presley, B. J. Relationships between geochemical parameters (pH, DOC, SPM, EDTA Concentrations) and trace metal (Cd, Co, Cu, Fe, Mn, Ni, Pb, Zn) concentrations in river waters of Texas (USA). Aquatic Geochemistry. 19 (2), 173-193 (2013).
  21. Peltzer, E. T., et al. A comparison of methods for the measurement of dissolved organic carbon in natural waters. Marine Chemistry. 54, 85-96 (1996).
  22. Nowack, B., Kari, F., Hilger, S. U., Sigg, L. Determination of dissolved and adsorbed EDTA species in water and sediments by HPLC. Analytical Chemistry. 68 (3), 561-566 (1996).
  23. Bergers, P. J. M., de Groot, A. C. The analysis of EDTA in water by HPLC. Water Research. 28 (3), 639-642 (1994).
check_url/kr/54073?article_type=t

Play Video

Cite This Article
Jiann, K., Wen, L., Santschi, P. H. Clean Sampling and Analysis of River and Estuarine Waters for Trace Metal Studies. J. Vis. Exp. (113), e54073, doi:10.3791/54073 (2016).

View Video