Summary

超声心动图方法和协议心脏瓣膜疾病的综合表型特征小鼠

Published: February 14, 2017
doi:

Summary

This protocol provides a detailed description of the echocardiographic approach for comprehensive phenotyping of heart and heart valve function in mice.

Abstract

The aim of this manuscript and accompanying video is to provide an overview of the methods and approaches used for imaging heart valve function in rodents, with detailed descriptions of the appropriate methods for anesthesia, the echocardiographic windows used, the imaging planes and probe orientations for image acquisition, the methods for data analysis, and the limitations of emerging technologies for the evaluation of cardiac and valvular function. Importantly, we also highlight several future areas of research in cardiac and heart valve imaging that may be leveraged to gain insights into the pathogenesis of valve disease in preclinical animal models. We propose that using a systematic approach to evaluating cardiac and heart valve function in mice can result in more robust and reproducible data, as well as facilitate the discovery of previously underappreciated phenotypes in genetically-altered and/or physiologically-stressed mice.

Introduction

衰老与心血管钙化1逐步增加有关。血液动力学显著主动脉瓣狭窄影响了人口的65 2岁以上的3%,而患者甚至中度主动脉瓣狭窄(3-4米/秒峰值速度)小于40%,5年无事件生存率3。目前,有减缓主动脉瓣钙化的进展没有有效的治疗,和手术主动脉瓣置换为先进主动脉瓣狭窄4唯一可用的治疗方法。

旨在获得有助于启动和主动脉瓣钙化进展的机制有更深的了解研究是在走向药理和非手术方法来管理主动脉瓣狭窄5,6的关键的第一步。遗传学LY-改造的小鼠都起到了我们的开发有助于各种疾病,现在即将旨在了解主动脉瓣狭窄6,7,8的生物学机理研究的最前沿机制的理解了重大作用。不像其他心血管疾病如动脉粥样硬化和心脏衰竭,其中用于评估血管和心室功能标准协议是行之有效的,存在与小鼠心脏瓣膜功能的体内表型相关的独特的挑战的大部分。虽然最近的评论已提供了有关的优点和缺点,以众多的成像和用于评估在啮齿类动物中9,10,11阀功能侵入性的方式充分的讨论,到今天为止,我们不知道它提供了一个COMPRE出版物的hensive,一步一步在小鼠表型心脏瓣膜功能的协议。

本手稿的目的是描述该方法和协议,以表型心脏瓣膜功能的小鼠。所有的方法和程序,已通过梅奥诊所的机构动物护理和使用委员会。该协议的主要内容包括麻醉深度,心功能的评价,和心脏瓣膜功能的评价。我们希望这份报告不仅有利于引导有兴趣在心脏瓣膜病领域追求研究调查,但也将启动相关协议标准化,以确保在这一快速增长的领域数据的重现性和有效性的国家和国际对话。重要的是,采用高分辨率超声系统成功成像需要的超声(和术语在超声常用)的原理的工作知识,基本的原理与的理解心脏生理学,并用超声显著经验的莱斯以允许在啮齿类动物心脏功能的准确时间效率的评估。

Protocol

1.准备材料和设备(表1和图1) 打开超声机上。输入动物ID,日期和时间(串行成像实验)及其他相关信息。 使用高频超声换能器,40兆赫成像小鼠小于约20 g或小鼠大于约20 g以上30兆赫。 该平台连接到心电图(ECG)监测成像心电门控的某些方式。 注:重要的是,这也允许对心脏心率(HR),它可以用作麻醉的适当深度的多个索引中的一个的瞬时计算。 预加热平台?…

Representative Results

该例行从动物心脏超声成像获得的图像的示例包括在本手稿。传感器安置在动物的胸部一个例证是提供给读者的,其中传感器被定位为,从而获得图像清晰的认识。也包括在超声实验室的建立的照片强调适当的设备,特别是超声换能器中使用和麻醉的方法的重要性。的2D / B模式,M模式,并且正常和异常阀,左,右心室,和主动脉根部的颜色和多普勒显示器被适当标记。虽…

Discussion

麻醉诱导

适当的麻醉诱导和维持是在心脏瓣膜小鼠变化的准确评估和心脏功能的关键。由于麻醉的快速诱导异氟醚和以下深度麻醉这一麻醉药的相对较长的洗出时间引起的,我们不使用一个独立的腔麻醉诱导。相反,如在详细说明以上,动物被直接引导至麻醉锥,其允许在相对较低的浓度的麻醉剂的麻醉的快速和受控诱导。

小鼠大多数菌株在…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by NIH grants HL111121 (JDM) and TR000954 (JDM).

Materials

High resolution ultrasound machine VisualSonics, Fujifilm Vevo 2100 
Isoflurane diffuser (capable of delivering 1 % to 1.5 % isoflurane mixed with 1 L/min 100% O2 VisualSonics, Fujifilm N/A
Transducers for small mice (550D) or larger mice (400) MicroScan, VisualSonics, Fujifilm MS 550D, MS 400
Animal platform VisualSonics, Fujifilm 11503
Advanced physiological monitoring unit VisualSonics, Fujifilm N/A
Isoflurane Terrell NDC 66794-019-10
Nose cone and tubing connected to isoflurane diffuser and 100% O2 Custom Engineered in-house
Hair razor Andis Super AGR+ vet pack clipper AD65340
Ultrasound gel Parker Laboratories REF 01-08
Electrode gel  Parker Laboratories REF 15-25
Adhesive tapes Fisher Laboratories 1590120B
Paper towels

References

  1. Ngo, D. T., et al. Determinants of occurrence of aortic sclerosis in an aging population. JACC Cardiovasc Imaging. 2, 919-927 (2009).
  2. Nkomo, V. T. Epidemiology and prevention of valvular heart diseases and infective endocarditis in Africa. Heart. 93, 1510-1519 (2007).
  3. Amato, M. C., Moffa, P. J., Werner, K. E., Ramires, J. A. Treatment decision in asymptomatic aortic valve stenosis: role of exercise testing. Heart. 86, 381-386 (2001).
  4. Bonow, R. O., et al. Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease: a report of the American College of Cardiology/American Heart Association Task Force on Practice Guidelines (Writing Committee to Revise the 1998 Guidelines for the Management of Patients With Valvular Heart Disease): endorsed by the Society of Cardiovascular Anesthesiologists, Society for Cardiovascular Angiography and Interventions, and Society of Thoracic Surgeons. Circulation. 118, e523-e661 (2008).
  5. Yutzey, K. E., et al. Calcific aortic valve disease: a consensus summary from the Alliance of Investigators on Calcific Aortic Valve Disease. Arterioscler Thromb Vasc Biol. 34, 2387-2393 (2014).
  6. Rajamannan, N. M. Calcific aortic valve disease: cellular origins of valve calcification. Arterioscler Thromb Vasc Biol. 31, 2777-2778 (2011).
  7. Weiss, R. M., Miller, J. D., Heistad, D. D. Fibrocalcific aortic valve disease: opportunity to understand disease mechanisms using mouse models. Circ Res. 113, 209-222 (2013).
  8. Sider, K. L., Blaser, M. C., Simmons, C. A. Animal models of calcific aortic valve disease. Int J Inflam. 2011, 364310 (2011).
  9. Miller, J. D., Weiss, R. M., Heistad, D. D. Calcific aortic valve stenosis: methods, models, and mechanisms. Circ Res. 108, 1392-1412 (2011).
  10. Ram, R., Mickelsen, D. M., Theodoropoulos, C., Blaxall, B. C. New approaches in small animal echocardiography: imaging the sounds of silence. Am J Physiol Heart Circ Physiol. 301, H1765-H1780 (2011).
  11. Moran, A. M., Keane, J. F., Colan, S. D. Influence of pressure and volume load on growth of aortic annulus and left ventricle in patients with critical aortic stenosis. J Am Coll Cardiol. 37, 471a (2001).
  12. Thibault, H. B., et al. Noninvasive assessment of murine pulmonary arterial pressure: validation and application to models of pulmonary hypertension. Circ Cardiovasc Imaging. 3, 157-163 (2010).
  13. Baumgartner, H., et al. Echocardiographic assessment of valve stenosis: EAE/ASE recommendations for clinical practice. J Am Soc Echocardiogr. 22, 1-23 (2009).
  14. Lang, R. M., et al. Recommendations for cardiac chamber quantification by echocardiography in adults: an update from the American Society of Echocardiography and the European Association of Cardiovascular Imaging. Eur Heart J Cardiovasc Imaging. 16, 233-270 (2015).
  15. Devereux, R. B., Reichek, N. Echocardiographic determination of left ventricular mass in man. Anatomic validation of the method. Circulation. 55, 613-618 (1977).
  16. Ommen, S. R., et al. Clinical utility of Doppler echocardiography and tissue Doppler imaging in the estimation of left ventricular filling pressures: A comparative simultaneous Doppler-catheterization study. Circulation. 102, 1788-1794 (2000).
  17. Tei, C., et al. New index of combined systolic and diastolic myocardial performance: a simple and reproducible measure of cardiac function–a study in normals and dilated cardiomyopathy. J Cardiol. 26, 357-366 (1995).
  18. Koshizuka, R., et al. Longitudinal strain impairment as a marker of the progression of heart failure with preserved ejection fraction in a rat model. J Am Soc Echocardiogr. 26, 316-323 (2013).
  19. Ishizu, T., et al. Left ventricular strain and transmural distribution of structural remodeling in hypertensive heart disease. Hypertension. 63, 500-506 (2014).
  20. Yamada, S., et al. Induced pluripotent stem cell intervention rescues ventricular wall motion disparity, achieving biological cardiac resynchronization post-infarction. J Physiol. 591, 4335-4349 (2013).
  21. Andrews, T. G., Lindsey, M. L., Lange, R. A., Aune, G. J. Cardiac Assessment in Pediatric Mice: Strain Analysis as a Diagnostic Measurement. Echocardiography. 31, 375-384 (2014).
  22. Ferferieva, V., et al. Assessment of strain and strain rate by two-dimensional speckle tracking in mice: comparison with tissue Doppler echocardiography and conductance catheter measurements. Eur Heart J Cardiovasc Imaging. 14, 765-773 (2013).
  23. Fine, N. M., et al. Left and right ventricular strain and strain rate measurement in normal adults using velocity vector imaging: an assessment of reference values and intersystem agreement. Int J Cardiovasc Imaging. 29, 571-580 (2013).
  24. Pernot, M., Fujikura, K., Fung-Kee-Fung, S. D., Konofagou, E. E. ECG-gated, mechanical and electromechanical wave imaging of cardiovascular tissues in vivo. Ultrasound Med Biol. 33, 1075-1085 (2007).
  25. Liu, J. H., Jeng, G. S., Wu, T. K., Li, P. C. ECG triggering and gating for ultrasonic small animal imaging. IEEE Trans Ultrason Ferroelectr Freq Control. 53, 1590-1596 (2006).
  26. Monin, J. L., et al. Low-gradient aortic stenosis: operative risk stratification and predictors for long-term outcome: a multicenter study using dobutamine stress hemodynamics. Circulation. , 319-324 (2003).
check_url/kr/54110?article_type=t

Play Video

Cite This Article
Casaclang-Verzosa, G., Enriquez-Sarano, M., Villaraga, H. R., Miller, J. D. Echocardiographic Approaches and Protocols for Comprehensive Phenotypic Characterization of Valvular Heart Disease in Mice. J. Vis. Exp. (120), e54110, doi:10.3791/54110 (2017).

View Video