Summary

Genome Editing in<em> Mexicanus Astianatte</em> Uso Trascrizione Activator simile Effector nucleasi (Talens)

Published: June 20, 2016
doi:

Summary

Gene-targeting mutagenesi è ora possibile in una vasta gamma di organismi che utilizzano tecniche di editing genoma. Qui, dimostriamo un protocollo per la mutagenesi genica mirata utilizzando trascrizione attivatore come nucleasi effettrici (Talens) in Astianatte mexicanus, una specie di pesci che comprende pesce di superficie e cavefish.

Abstract

Identifying alleles of genes underlying evolutionary change is essential to understanding how and why evolution occurs. Towards this end, much recent work has focused on identifying candidate genes for the evolution of traits in a variety of species. However, until recently it has been challenging to functionally validate interesting candidate genes. Recently developed tools for genetic engineering make it possible to manipulate specific genes in a wide range of organisms. Application of this technology in evolutionarily relevant organisms will allow for unprecedented insight into the role of candidate genes in evolution. Astyanax mexicanus (A. mexicanus) is a species of fish with both surface-dwelling and cave-dwelling forms. Multiple independent lines of cave-dwelling forms have evolved from ancestral surface fish, which are interfertile with one another and with surface fish, allowing elucidation of the genetic basis of cave traits. A. mexicanus has been used for a number of evolutionary studies, including linkage analysis to identify candidate genes responsible for a number of traits. Thus, A. mexicanus is an ideal system for the application of genome editing to test the role of candidate genes. Here we report a method for using transcription activator-like effector nucleases (TALENs) to mutate genes in surface A. mexicanus. Genome editing using TALENs in A. mexicanus has been utilized to generate mutations in pigmentation genes. This technique can also be utilized to evaluate the role of candidate genes for a number of other traits that have evolved in cave forms of A. mexicanus.

Introduction

La comprensione delle basi genetiche dell'evoluzione tratto è un obiettivo di ricerca critica di biologi evoluzionisti. Notevoli progressi sono stati fatti per identificare loci sottostanti l'evoluzione dei tratti e individuare geni candidati all'interno di questi loci (ad esempio 1-3). Tuttavia, funzionalmente testare il ruolo di questi geni è rimasta sfidando come molti organismi utilizzati per studiare l'evoluzione dei tratti non sono attualmente geneticamente trattabili. L'avvento delle tecnologie di editing genoma è notevolmente aumentato manipolabilità genetica di una vasta gamma di organismi. Trascrizione nucleasi attivatore simile effettrici (Talens) e cluster regolarmente intervallati brevi ripetizioni palindromi (CRISPRs) sono stati utilizzati per generare mutazioni nei geni mirati in una serie di organismi (ad esempio 4-11). Questi strumenti, applicati ad un sistema evolutivamente rilevanti, hanno il potenziale per rivoluzionare il modo in cui i biologi evoluzionisti studiare le basi genetiche dell'evoluzione.

Astianatte mexicanus è una specie di pesci che esiste in due forme:. Un fiume-dimora forma di superficie (pesce di superficie) e molteplici forme cavernicoli (cavefish) A. mexicanus cavefish si è evoluta da antenati dei pesci di superficie (recensito in 12). Le popolazioni di cavefish hanno sviluppato un certo numero di caratteristiche tra cui la perdita degli occhi, diminuzione o perdita della pigmentazione, aumento del numero di papille gustative e neuromasti cranici, e cambiamenti nel comportamento come la perdita di comportamento scolastico, maggiore aggressività, cambiamenti di alimentazione postura e iperfagia 13 -19. Cavefish e pesce di superficie sono interfertili, e gli esperimenti di mappatura genetica sono stati effettuati per identificare loci e geni candidati per i tratti rupestri 1,20-26. Alcuni geni candidati sono stati testati per un ruolo funzionale nel contribuire a tratti rupestri in coltura cellulare 1,19, in organismi modello di altre specie di 21 o da 27 o sovraespressione atterramento transitoria ucantare morpholinos 28 in A. mexicanus. Tuttavia, ciascuno di questi metodi ha limitazioni. La capacità di generare alleli mutanti di questi geni in A. mexicanus è fondamentale per comprendere la loro funzione nell'evoluzione del cavefish. Così, A. mexicanus è un organismo candidato ideale per l'applicazione di tecnologie di modifica del genoma.

Qui descriviamo un metodo per la modifica del genoma in A. mexicanus utilizzando Talens. Questo metodo può essere utilizzato per valutare mosaico iniettato pesce fondatore per fenotipi e per isolare le linee di pesce con mutazioni nei geni stabili di interesse 29.

Protocol

Tutte le procedure di animali erano in conformità con le linee guida del National Institutes of Health e sono stati approvati dal Comitato di Cura e uso istituzionale degli animali alla Iowa State University e l'Università del Maryland. 1. TALEN design Ingresso desiderato sequenza bersaglio di un sito web di progettazione TALEN. (Per esempio: https://tale-nt.cac.cornell.edu/node/add/talen ). Ingresso scelto lunghez…

Representative Results

Talen coppia iniezioni provocano vincolante delle RVDS a specifici nucleotidi del DNA e quindi dimerizzazione di domini FokI, con conseguente rotture a doppia elica 39, che possono essere riparati attraverso non omologhe fine di entrare (NHEJ). NHEJ spesso introduce errori che si traducono in inserzioni o delezioni (indels). Indels possono essere identificati amplificando la regione circostante il sito di destinazione TALEN e digerire l'amplicone risultante con un…

Discussion

Grandi passi avanti sono stati compiuti negli ultimi anni verso la comprensione delle basi genetiche dell'evoluzione dei tratti. Mentre sono stati identificati geni candidati sottostanti l'evoluzione di un certo numero di tratti, è rimasta impegnativo per testare questi geni in vivo a causa della mancanza di trattabilità genetica di specie più interessanti evolutivamente. Qui riportiamo un metodo per la modifica del genoma in A. mexicanus, una specie utilizzate per studiare l'evoluzione …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Questo lavoro è stato finanziato dal Dipartimento di Genetica, Sviluppo e Biologia Cellulare e Iowa State University e dal NIH concedere EY024941 (WJ) .dr. Jeffrey Essner fornito commenti sul manoscritto.

Materials

Equipment
Thermocycler
Injection station
Gel apparatus
Needle puller
Nanodrop
Name Company Catalog Number Comments
Supplies
Note: As far as we know, supplies from different companies can be used unless otherwise indicated
Golden Gate TALEN and TAL Effector Kit 2.0 Addgene Kit #1000000024
Fisher BioReagents LB Agar, Miller (Granulated) Fisher BP9724-500
Fisher BioReagents Microbiology Media: LB Broth, Miller Fisher BP1426-500
Teknova TET-15 in 50% EtOH Teknova (ordered through Fisher) 50-843-314
Spectinomycin Dihydrochloride, Fisher BioReagents Fisher BP2957-1
Super Ampicillin (1000x solution) DNA Technologies 6060-1
ThermoScientific X-Gal Solution, ready-to-use Thermo Sci Fermentas Inc (Ordered through Fisher) FERR0941
IPTG, Fisher BioReagents Fisher BP1620-1
Petri dishes Fisher 08-757-13
BsaI New England Biolabs (ordered through Fisher) 50-812-203 Use BsaI, not BsaI-HF (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
BSA New England Biolabs provided with restriction enzymes
10x T4 ligase buffer Promega (ordered through Fisher) PR-C1263
GoTaq Green Master mix Promega (ordered through Fisher) PRM7123 Other Taq can be used, but the reaction should be adjusted accordingly
Quick ligation kit New England Biolabs (ordered through Fisher) 50-811-728 We use Quick Ligase for all TALEN assembly reactions
One Shot TOP10 Chemically Competent E.coli Invitrogen C4040-06 Other chemically competent cells or homemade competent cells can be used
Esp 3I Thermo Sci Fermentas Inc (Ordered through Fisher) FERER0451
Plasmid-Safe ATP-dependent DNase Epicentre (Ordered through Fisher) NC9046399
QIAprep Spin Miniprep Kit Qiagen 27106 The Qiagen kit should be used for the initial plasmid preparation (as described in the Golden Gate TALEN and TAL Effector Kit protocol)
QIAquick PCR Purification Kit Qiagen 28104
GeneMate LE Quick Dissolve Agaraose BioExpress E-3119-125
Sac I Promega (Ordered through Fisher) PR-R6061
mMESSAGE mMACHINE T3 Transcription kit Ambion AM1348M
Rneasy MinElute Cleanup Kit Qiagen 74204
NorthernMax-Gly Sample Loading Dye  Ambion (ordered through Fisher) AM8551
Eliminase Decon (ordered through Fisher) 04-355-32
Fisherbrand Disposable Soda-Lime Glass Pasteur Pipets Fisher 13-678-6B
Standard Glass Capillaries World Precision Instruments 1B100-4
Microcaps Drummond Scientific Company 1-000-0010
Eppendorf Femtotips Microloader Tips for Femtojet Microinjector Eppendorf (ordered through Fisher) E5242956003
Sodium hydroxide Fisher S318-500
Tris base Fisher BP152-1

References

  1. Protas, M. E., et al. Genetic analysis of cavefish reveals molecular convergence in the evolution of albinism. Nat Genet. 38 (1), 107-111 (2006).
  2. Hoekstra, H. E., Hirschmann, R. J., Bundey, R. A., Insel, P. A., Crossland, J. P. A single amino acid mutation contributes to adaptive beach mouse color pattern. Science. 313 (5783), 101-104 (2006).
  3. Chan, Y. F., et al. Adaptive evolution of pelvic reduction in sticklebacks by recurrent deletion of a Pitx1 enhancer. Science. 327 (5963), 302-305 (2010).
  4. Liu, J., et al. Efficient and specific modifications of the Drosophila genome by means of an easy TALEN strategy. J Genet Genomics. 39 (5), 209-215 (2012).
  5. Bannister, S., et al. TALENs mediate efficient and heritable mutation of endogenous genes in the marine annelid Platynereis dumerilii. 유전학. 197 (1), 77-89 (2014).
  6. Lei, Y., et al. Efficient targeted gene disruption in Xenopus embryos using engineered transcription activator-like effector nucleases (TALENs). Proc Natl Acad Sci U S A. 109 (43), 17484-17489 (2012).
  7. Bedell, V. M., et al. In vivo genome editing using a high-efficiency TALEN system. Nature. 491 (7422), 114-118 (2012).
  8. Huang, P., et al. Heritable gene targeting in zebrafish using customized TALENs. Nat Biotechnol. 29 (8), 699-700 (2011).
  9. Ansai, S., et al. Efficient targeted mutagenesis in medaka using custom-designed transcription activator-like effector nucleases. 유전학. 193 (3), 739-749 (2013).
  10. Zhang, X., et al. Isolation of doublesex- and mab-3-related transcription factor 6 and its involvement in spermatogenesis in tilapia. Biol Reprod. 91 (6), 136 (2014).
  11. Wang, H., et al. One-step generation of mice carrying mutations in multiple genes by CRISPR/Cas-mediated genome engineering. Cell. 153 (4), 910-918 (2013).
  12. Gross, J. B. The complex origin of Astyanax cavefish. BMC Evol Biol. 12, 105 (2012).
  13. Wilkens, H. Evolution and genetics of epigean and cave Astyanax fasciatus (Characidae, Pisces) – support for the neutral mutation theory. Evolutionary Biology. 23, 271-367 (1988).
  14. Teyke, T. Morphological differences in neuromasts of the blind cave fish Astyanax hubbsi and the sighted river fish Astyanax mexicanus. Brain Behav Evol. 35 (1), 23-30 (1990).
  15. Schemmel, C. Genetische Untersuchungen zur Evolution des Geschmacksapparates bei cavernicolen Fischen. Z Zool Syst Evolutionforsch. 12, 196-215 (1974).
  16. Burchards, H., Dolle, A., Parzefall, J. Aggressive behavior of an epigean population of Astyanax mexicanus (Characidae, Pisces) and some observations of three subterranean populations. Behavioral Processes. 11, 225-235 (1985).
  17. Parzefall, J., Fricke, D. Alarm reaction and schooling in population hybrids of Astyanax fasciatus (Pisces, Characidae). Memoires e Biospeologie. , 29-32 (1991).
  18. Schemmel, C. Studies on the Genetics of Feeding Behavior in the Cave Fish Astyanax mexicanus F. anoptichthys. Z. Tierpsychol. 53, 9-22 (1980).
  19. Aspiras, A. C., Rohner, N., Martineau, B., Borowsky, R. L., Tabin, C. J. Melanocortin 4 receptor mutations contribute to the adaptation of cavefish to nutrient-poor conditions. Proc Natl Acad Sci U S A. 112 (31), 9668-9673 (2015).
  20. Protas, M., et al. Multi-trait evolution in a cave fish, Astyanax mexicanus. Evol Dev. 10 (2), 196-209 (2008).
  21. Gross, J. B., Borowsky, R., Tabin, C. J. A novel role for Mc1r in the parallel evolution of depigmentation in independent populations of the cavefish Astyanax mexicanus. PLoS Genet. 5 (1), e1000326 (2009).
  22. Yoshizawa, M., Yamamoto, Y., O’Quin, K. E., Jeffery, W. R. Evolution of an adaptive behavior and its sensory receptors promotes eye regression in blind cavefish. BMC Biol. 10, 108 (2012).
  23. Quin, K. E., Yoshizawa, M., Doshi, P., Jeffery, W. R. Quantitative genetic analysis of retinal degeneration in the blind cavefish Astyanax mexicanus. PLoS One. 8 (2), 57281 (2013).
  24. Kowalko, J. E., et al. Convergence in feeding posture occurs through different genetic loci in independently evolved cave populations of Astyanax mexicanus. Proc Natl Acad Sci U S A. 110 (42), 16933-16938 (2013).
  25. Kowalko, J. E., et al. Loss of Schooling Behavior in Cavefish through Sight-Dependent and Sight-Independent Mechanisms. Curr Biol. , (2013).
  26. Gross, J. B., Krutzler, A. J., Carlson, B. M. Complex craniofacial changes in blind cave-dwelling fish are mediated by genetically symmetric and asymmetric loci. 유전학. 196 (4), 1303-1319 (2014).
  27. Yamamoto, Y., Stock, D. W., Jeffery, W. R. Hedgehog signalling controls eye degeneration in blind cavefish. Nature. 431 (7010), 844-847 (2004).
  28. Bilandzija, H., Ma, L., Parkhurst, A., Jeffery, W. R. A potential benefit of albinism in Astyanax cavefish: downregulation of the oca2 gene increases tyrosine and catecholamine levels as an alternative to melanin synthesis. PLoS One. 8 (11), e80823 (2013).
  29. Ma, L., Jeffery, W. R., Essner, J. J., Kowalko, J. E. Genome editing using TALENs in blind Mexican Cavefish, Astyanax mexicanus. PLoS One. 10 (3), e0119370 (2015).
  30. Untergrasser, A., Cutcutache, I., Koressaar, T., Ye, J., Faircloth, B. C., Remm, M., Rozen, S. G. Primer3- new capabilities and interfaces. Nucleic Acids Res. 40 (15), 115 (2012).
  31. Koressaar, T., Remm, M. Enhancements and modifications of primer design program Primer3. Bioinformatics. 23 (10), 1289-1291 (2007).
  32. Cermak, T., et al. Efficient design and assembly of custom TALEN and other TAL effector-based constructs for DNA targeting. Nucleic Acids Res. 39 (12), 82 (2011).
  33. . Addgene. Golden TALEN assembly Available from: https://www.addgene.org/static/cms/filer_public/98/5a/985a6117-7490-4001-8f6a-24b2cf7b005b/golden_gate_talen_assembly_v7.pdf (2011)
  34. A device to hold zebrafish embryos during microinjection. ZFIN Protocol Wiki Available from: https://wiki.zfin.org/display/prot/A+Device+To+Hold+Zebrafish+Embryos+During+Microinjection (2009)
  35. Hinaux, H., et al. A developmental staging table for Astyanax mexicanus surface fish and Pachon cavefish. Zebrafish. 8 (4), 155-165 (2011).
  36. Schindelin, J., et al. Fiji: an open-source platform for biological-image analysis. Nat Methods. 9 (7), 676-682 (2012).
  37. Bitinaite, J., Wah, D. A., Aggarwal, A. K., Schildkraut, I. FokI dimerization is required for DNA cleavage. Proc Natl Acad Sci U S A. 95 (18), 10570-10575 (1998).
  38. Elipot, Y., et al. A mutation in the enzyme monoamine oxidase explains part of the Astyanax cavefish behavioural syndrome. Nat Commun. 5, 3647 (2014).
  39. McGaugh, S. E., et al. The cavefish genome reveals candidate genes for eye loss. Nat Commun. 5, 5307 (2014).
  40. Yoshizawa, M., Goricki, S., Soares, D., Jeffery, W. R. Evolution of a behavioral shift mediated by superficial neuromasts helps cavefish find food in darkness. Curr Biol. 20 (18), 1631-1636 (2010).
  41. Blackburn, P. R., Campbell, J. M., Clark, K. J., Ekker, S. C. The CRISPR system–keeping zebrafish gene targeting fresh. Zebrafish. 10 (1), 116-118 (2013).
  42. Varshney, G. K., et al. High-throughput gene targeting and phenotyping in zebrafish using CRISPR/Cas9. Genome Res. 25 (7), 1030-1042 (2015).
  43. Shin, J., Chen, J., Solnica-Krezel, L. Efficient homologous recombination-mediated genome engineering in zebrafish using TALE nucleases. Development. 141 (19), 3807-3818 (2014).
  44. Ablain, J., Durand, E. M., Yang, S., Zhou, Y., Zon, L. I. A CRISPR/Cas9 vector system for tissue-specific gene disruption in zebrafish. Dev Cell. 32 (6), 756-764 (2015).
  45. Yamamoto, Y., Jeffery, W. R. Central role for the lens in cave fish eye degeneration. Science. 289 (5479), 631-633 (2000).
check_url/kr/54113?article_type=t

Play Video

Cite This Article
Kowalko, J. E., Ma, L., Jeffery, W. R. Genome Editing in Astyanax mexicanus Using Transcription Activator-like Effector Nucleases (TALENs). J. Vis. Exp. (112), e54113, doi:10.3791/54113 (2016).

View Video