Summary

蛋白质生物缀合物的合成<em>通过</em>半胱氨酸马来酰亚胺化学

Published: July 20, 2016
doi:

Summary

该协议细节对于含有蛋白质马来酰亚胺,包括试剂纯化,反应条件,生物共轭纯化和生物共轭表征半胱氨酸的生物结合所需的重要步骤。

Abstract

The chemical linking or bioconjugation of proteins to fluorescent dyes, drugs, polymers and other proteins has a broad range of applications, such as the development of antibody drug conjugates (ADCs) and nanomedicine, fluorescent microscopy and systems chemistry. For many of these applications, specificity of the bioconjugation method used is of prime concern. The Michael addition of maleimides with cysteine(s) on the target proteins is highly selective and proceeds rapidly under mild conditions, making it one of the most popular methods for protein bioconjugation.

We demonstrate here the modification of the only surface-accessible cysteine residue on yeast cytochrome c with a ruthenium(II) bisterpyridine maleimide. The protein bioconjugation is verified by gel electrophoresis and purified by aqueous-based fast protein liquid chromatography in 27% yield of isolated protein material. Structural characterization with MALDI-TOF MS and UV-Vis is then used to verify that the bioconjugation is successful. The protocol shown here is easily applicable to other cysteine – maleimide coupling of proteins to other proteins, dyes, drugs or polymers.

Introduction

生物缀涉及共价连接一种生物分子与另一个或同一个合成的分子,例如染料,药物或聚合物。蛋白质的生物耦合方法现在广泛应用于许多化学,生物和纳米技术研究小组使用,应用范围从荧光染料标记1,2,使蛋白质(抗体)-prodrugs 3(抗体偶联药物- ADC)的蛋白二聚体4,5的合成通过在纳米8和系统化学9中使用的自组装蛋白-聚合物杂种6,7。

用于生物结合化学的特异性,而并非总是关键的,是对大多数功能性蛋白质生物共轭物极为重要,以便不与目标蛋白的活性位点干扰。提供了理想生物缀反应需要满足若干标准,包括:感兴趣的蛋白质上ⅰ)靶向稀有或独特的位点,ⅱ)是有选择性的实现这一目标,ⅲ)非变性条件下进行,以避免蛋白质折叠和iv)是高产作为目标蛋白质通常只适用于子毫摩尔浓度。马来酰亚胺-半胱氨酸迈克尔加成接近满足所有这些标准,并具有该原因长权利生物共轭化学10的字段的特殊状态。这是因为,ⅰ)在其表面上仅含有一个半胱氨酸残基的许多蛋白质​​可以遗传工程那里,ⅱ)在正确的pH值的反应是朝着半胱氨酸高度选择性,ⅲ)它可顺利地进行在水性缓冲液和iv)它是非常快的与马来酰亚胺的二阶速率常数报告超过5000 M -1-1在某些情况下11含有半胱氨酸的蛋白质。提供感兴趣的蛋白质可以容忍有机的一个小的(≈5-10%)量的共溶剂12,几乎任何马来酰亚胺官能化的染料,婆lymer,表面或另一种蛋白可以链接到蛋白质。此外,马来酰亚胺是对蛋白质比碘乙酰胺,这是更容易在升高的​​pH值的其他亲核体进行反应的半胱氨酸更具体;比这需要在酸性pH值被保持,以防止二硫键交换13基于二硫键缀合更稳定。

此处我们报告马来酰亚胺官能化的分子的缀合的通用协议包含使用钌(Ⅱ)基的发色团和氧化还原蛋白细胞色素C作为例子之间的反应的单个半胱氨酸残基的蛋白质。这个协议同样适用于含有可接近表面的半胱氨酸残基和相应的马来酰亚胺官能化的靶大多数其他蛋白,无论是另一种蛋白,荧光染料,发色团或合成聚合物。

Protocol

注意: 如图1下面协议设计用于蛋白质-染料生物共轭的合成,可用于与含有游离表面半胱氨酸蛋白马来酰亚胺的反应的一般协议,与笔记插入在适用与膜蛋白来协助。生物共轭物,蛋白质类聚合物生物缀合物,以及合成的蛋白二聚体(蛋白质 – 蛋白质)生物缀合物。在这种特殊情况下,所述蛋白质异1色素c具有可用下反应一个表面半胱氨酸残基,它允许发生高度特异性的标记。如果感兴趣的蛋…

Representative Results

生物缀合物的合成通过三种主要方法证实:飞行质谱(MALDI-TOF MS),聚丙烯酰胺凝胶电泳的基质辅助激光解吸电离时间,和紫外可见(UV-VIS)光谱, 如图2所示,图3和4。对应于所附小分子的质量的质量增加,并且缺乏未反应蛋白质的演示钌(Ⅱ)的成功的共价键(万吨)2 -马来酰亚胺到细胞色素c和 ​​生物共轭的随?…

Discussion

一个生物结合前的原料纯化是非常重要的。从商业的重组来源得到的蛋白质常含有目的蛋白质,其可具有不同的表面化学和反应的其它同种型。例如,在所描述的生物结合,市售细胞色素C包含两个异1和异2色素C 12,14,17的混合物。异2和异1形式细胞色素c在很大程度上是同源的,与主要的区别是异1细胞色素C的C-末端附近的一个游离半胱氨酸残基的存在?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank the Australian Research Council (ARC) for ARC Future Fellowship (FT120100101) and ARC Centre of Excellence CE140100036) grants to P.T. and the Mark Wainwright Analytical Centre at UNSW for access to mass spectrometry and NMR facilities.

Materials

sodium dihydrogen phosphate Sigma-Aldrich 71496
sodium hydroxide Sigma-Aldrich 71691
sodium chloride Sigma-Aldrich 73575
cytochrome c, from saccaromyces cerevisiae Sigma-Aldrich C2436
dithiothreitol Sigma-Aldrich 43819
TSKgel SP-5PW Sigma-Aldrich Tosoh SP-5PW, 07161 3.3 mL strong cation exchange column
Amicon Ultra-15  Merck-Millipore UFC900308 3.5 kDa spin filter
Slide-A-Lyzer mini dialysis units Thermo Scientific 66333 3.5 kDa dialysis cassetes
Ru(II) bisterpyridine maleimide Lab made see ref (14)
acetonitrile Sigma-Aldrich A3396
ethylenediaminetetraacetic acid Sigma-Aldrich 03609
tris(2-carboxyethyl)phosphine hydrochloride  Sigma-Aldrich 93284
imidazole Sigma-Aldrich 56749
nickel acetate Sigma-Aldrich 244066
AcroSep IMAC Hypercell column Pall via VWR: 569-1008 1 mL IMAC column
0.2 micron cellulose membrane filter Whatman Z697958 47 mm filter for buffers
0.2 micron PVDF membrane filter Merck-Millipore SLGV013SL syringe filters for proteins
hydrochloric acid Sigma-Aldrich 84426 extremely corrosive! Use caution
caffeic acid Sigma-Aldrich 60018 MALDI matrix
trifluoroacetic acid Sigma-Aldrich 91707 extremely corrosive! Use caution
SimplyBlue SafeStain Thermo Scientific LC6060 Coomassie blue solution
NuPAGE Novex 12% Bis-Tris Gel Thermo Scientific NP0342BOX precast protein gels
SeeBlue Plus2 Pre-stained Protein Standard Thermo Scientific LC5925 premade protein ladder
NuPAGE LDS Sample Buffer (4X) Thermo Scientific NP0008 premade gel sample buffer
NuPAGE Sample Reducing Agent (10X) Thermo Scientific NP0004 premade gel reducing agent
NuPAGE MES SDS Running Buffer (20X) Thermo Scientific NP0002 premade gel running buffer
Voyager DE STR MALDI reflectron TOF MS Applied Biosystems
Acta FPLC GE Fast Protein Liquid Chromatography
Cary 50 Bio Spectrophotometer Varian-Agilent UV-Vis
Milli-Q ultrapure water dispenser Merck-Millipore ultrapure water
Low volume UV-Vis Cuvette Hellma 105-201-15-40 100 microliter cuvette

References

  1. Griffin, B. A., Adams, S. R., Tsien, R. Y. Specific covalent labeling of recombinant protein molecules inside live cells. Science. 281, 269-272 (1998).
  2. Sletten, E. M., Bertozzi, C. R. Bioorthogonal chemistry: Fishing for selectivity in a sea of functionality. Angew. Chem. Int. Ed. 48, 6974-6998 (2009).
  3. Lyon, R. P., Meyer, D. L., Setter, J. R., Senter, P. D. Conjugation of anticancer drugs through endogenous monoclonal antibody cysteine residues. Meth. Enzymol. 502, 123-138 (2012).
  4. Natarajan, A., Xiong, C. Y., Albrecht, H., DeNardo, G. L., DeNardo, S. J. Characterization of site-specific ScFv PEGylation for tumor-targeting pharmaceuticals. Bioconjug. Chem. 16, 113-121 (2005).
  5. Hvasanov, D., et al. One-Pot Synthesis of High Molecular Weight Synthetic Heteroprotein Dimers Driven by Charge Complementarity Electrostatic Interactions. J. Org. Chem. 79, 9594-9602 (2014).
  6. Thordarson, P., Le Droumaguet, B., Velonia, K. Well-defined protein-polymer conjugates–synthesis and potential applications. Appl. Microbiol. Biotechnol. 73, 243-254 (2006).
  7. Lutz, J. F., Börner, H. G. Modern trends in polymer bioconjugates design. Prog. Polym. Sci. 33, 1-39 (2008).
  8. Nicolas, J., Mura, S., Brambilla, D., Mackiewicz, N., Couvreur, P. Design, functionalization strategies and biomedical applications of targeted biodegradable/biocompatible polymer-based nanocarriers for drug delivery. Chem. Soc. Rev. 42, 1147-1235 (2013).
  9. Wong, C. K., et al. Polymersomes Prepared from Thermoresponsive Fluorescent Protein-Polymer Bioconjugates: Capture of and Report on Drug and Protein Payloads. Angew. Chem. Int. Ed. , 5317-5322 (2015).
  10. Hermanson, G. T. . Bioconjugate Techniques. , (2013).
  11. Li, J., Xu, Q., Cortes, D. M., Perozo, E., Laskey, A., Karlin, A. Reactions of cysteines substituted in the amphipathic N-terminal tail of a bacterial potassium channel with hydrophilic and hydrophobic maleimides. Proc. Natl. Acad. Sci. U.S.A. 99 (18), 11605-11610 (2002).
  12. Peterson, J. R., Smith, T. A., Thordarson, P. Synthesis and room temperature photo-induced electron transfer in biologically active bis(terpyridine)ruthenium(II)-cytochrome c bioconjugates and the effect of solvents on the bioconjugation of cytochrome c. Org. Biomol. Chem. 8, 151-162 (2010).
  13. Borges, C. R., Sherma, N. D. Techniques for the Analysis of Cysteine Sulfhydryls and Oxidative Protein Folding. Antioxid. Redox Signal. (3), 1-21 (2014).
  14. Peterson, J. R., Thordarson, P. Optimising the purification of terpyridine-cytochrome c bioconjugates. Chiang Mai J. Sci. 36 (2), 236-246 (2009).
  15. Hvasanov, D., Mason, A. F., Goldstein, D. C., Bhadbhade, M., Thordarson, P. Optimising the synthesis, polymer membrane encapsulation and photoreduction performance of Ru(II)- and Ir(III)-bis(terpyridine) cytochrome c bioconjugates. Org. Biomol. Chem. 11 (28), 4602-4612 (2013).
  16. Signor, L., Boeri Erba, E. Matrix-assisted Laser Desorption/Ionization Time of Flight (MALDI-TOF) Mass Spectrometric Analysis of Intact Proteins Larger than 100 kDa. J. Vis. Exp. , e50635 (2013).
  17. Foucher, M., Verdière, J., Lederer, F., Slonimski, P. P. On the presence of a non-trimethylated iso-1 cytochrome c in a wild-type strain of Saccharomyces cerevisiae). Eur. J. Biochem. 31, 139-143 (1972).
  18. Müller, M., Azzi, A. Selective labeling of beef heart cytochrome oxidase subunit III with eosin-5-maleimide. FEBS Lett. 184 (1), 110-114 (1985).
  19. Shen, B. Q., et al. Conjugation site modulates the in vivo stability and therapeutic activity of antibody-drug conjugates. Nat. Biotechnol. 30 (2), 184-189 (2012).
check_url/kr/54157?article_type=t

Play Video

Cite This Article
Mason, A. F., Thordarson, P. Synthesis of Protein Bioconjugates via Cysteine-maleimide Chemistry. J. Vis. Exp. (113), e54157, doi:10.3791/54157 (2016).

View Video