Summary

聚电解质复合物肝素结合域成骨生长因子交货

Published: August 22, 2016
doi:

Summary

Self-assembled polyelectrolyte complexes (PEC) fabricated from heparin and protamine were deposited on alginate beads to entrap and regulate the release of osteogenic growth factors. This delivery strategy enables a 20-fold reduction of BMP-2 dose in spinal fusion applications. This article illustrates the benefits and fabrication of PECs.

Abstract

在骨重建手术,生长因子超生理金额经验装上支架,以促进成功的骨融合。大剂量的高度有效的生物制剂的需要,由于生长因子的不稳定性如快速酶降解的结果,以及在植入物位点定位足够量的生长因子的载体的低效率。因此,该延长的生长因子的稳定性,如BMP-2 / NELL-1,并控制其释放策略实际上​​可以降低其有效剂量,从而减少了需要更大的剂量期间未来骨再生手术。反过来,这将减少副作用和生长因子的成本。自组装胸肌已经制造通过增强的体内稳定性通过肝素结合,并进一步使可能生长因子的生物活性提供的BMP-2 / NELL-1递送的更好的控制。在这里,我们说明了PEC制造这有助于在国内配送简单的过程中重建骨手术的各种生长因子RY。

Introduction

假的发病率已经报道高达10〜45%,在退化性脊柱融合和修订脊柱手术1。以减少脊柱融合和其他重建骨手术,骨生长因子如BMP-2,内尔-1 1和血小板衍生的生长因子(PDGF)已被引入,以促进从头成骨过程中假关节的速度。其中,BMP-2是脊柱融合2的热门选择。虽然BMP-2的诱导和促进新骨形成的效力已被很好地建立3;临床显著并发症,如异位骨形成,血清肿和血肿形成,炎症反应,神经根,椎体骨溶解和逆行射精继续关注的问题,由于使用的4,5超生理金额。

因此,降低的BMP-2的剂量保持在一个相关的策略引诱最小化的副作用。此外,需要有效的载体系统来抑制BMP-2在当代胶原海绵载波系统观察到的突释,并进一步加强这种有效的细胞因子的长期和本地化交货。交替阳离子和阴离子聚电解质的层-层自组装,可以用作建立脚手架基质或植入材料6的表面上的聚电解质复合物的可调谐方法。在这方面,肝素(对于具有所有生物剂的最高负电荷密度已知)已被识别为贪婪地通过静电和肝素结合结构域的多种生长因子结合。的确,肝素已经显示出延长的半衰期,从而使可能的多种生长因子的生物活性。

在此基础上,我们的组适于层 – 层自组装协议来制造基于肝素的聚电解质复合物(PEC),该负载和固定7,8中保留了成骨生长因子的生物活性。藻酸盐微球芯由交联的α-L-古洛糖醛酸盐(G),用二价阳离子钙或锶离子藻酸盐的残基制成。藻酸盐核心是可生物降解的支架基质;该植入后,它是在融合床提供余地骨向内生长吸收。聚-L-赖氨酸(PLL)或鱼精蛋白被用作阳离子层与两个支架矩阵(在这种情况下,藻微珠载体芯)和带负电的肝素隔行;而阴离子肝素层的功能,以稳定和定位加载生长因子。三重层的PEC已经显示出增加的生长因子负载能力在猪模型9。最近,PEC载体已显示出至少20倍的成功减少在大鼠10和脊骨融合8的猪模型的BMP-2的有效剂量。

ntent“>在这里,用BMP-2作为模型骨生长因子,我们报告脊柱融合增强生长因子交付和其他骨重建手术制造佩奇方法。

Protocol

1.海藻酸钠溶液制备溶解200毫克藻酸钠(未照射),或者400毫克8兆拉德的在10ml双蒸水照射海藻酸钠振摇1小时的非辐射藻酸盐和辐照藻15分钟。过夜储存在4℃的藻酸盐溶液。滤波器海藻酸钠微珠制作之前无菌0.2微米的注射器过滤的藻酸盐溶液。 2.海藻酸钠微珠制作消毒静电珠发生器和注射器泵用70%乙醇,并放置在一类二生物安全柜( 图1)。…

Representative Results

在我们的载体,鱼精蛋白被选为聚-L-赖氨酸的替代,因为它有类似的化学性质,它是FDA批准作为肝素的解毒剂。光学显微镜结果表明,非照射微珠呈球状的形状,直径为267±14微米。 (0.35毫米喷嘴,流量为5ml /小时和5.8千伏率)。大部分照射微珠是泪滴形状。上照射微珠的轮部测得的直径为212±30微米(0.35毫米喷嘴,流速为4毫升/小时和6千伏率)。 ( 图4)。 …

Discussion

该协议提出了通过层 – 层自组装制备的PEC的方法。的层 – 层结构,使用鱼精蛋白,肝素,BMP-2和NELL-1和共聚焦显微镜的荧光类似物可视化。吸收和释放试验表明,肝素对PEC介导成骨生长因子的吸收和释放。在PEC方法的摄取效率是:NELL-1:86.7±2.7%,BMP-2:70.5±3.1%。在PEC载体具有NELL-1(20%)释放的更好的调制相比,纯表面吸附载体如钙磷灰石颗粒(40-80%)11。

除了 ?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

These studies were funded by National Medical Research Council Clinician Scientist – Individual Research Grant (CS-IRG) NMRC/CIRG/1372/2013 and NMRC EDG/0022/2008.

Materials

Life Science Acrodisc 25mm Syring Filter w/0.2 µm Supor  Membrane PALL  PN4612 Sterile protamine,
 heparin solution by ultrafiltration
24 well plate Cell Star  662160
96 well plate Nuclon Delta Surface Thermo Fisher Scientific 167008
(3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide), MTT Sigma Aldrich M5655 Measure cytotoxicity of PEC-NELL-1
Acetone Fisher Scientific A/0600/17 Precipitate CF-405
Labelled protamine 
Alamar Blue Invitrogen, Life Technologies DAL 1025 Measure cytotoxicity of PEC-BMP-2
Alkaline Phosphatase Assay (ALP) assay kit Anaspec AS-72146
Ammonium Chloride Merck Art 1145 Stop reagent in FITC labelling
Anhydrous Dimethyl Sulfoxide (DMSO) Invitrogen, Life Technologies D12345 Solvent for fluorescent isothiocyanate I
Dimethyl Sulfoxide (DMSO) Sigma Aldrich Dissolve  formazan 
Autoclave Hirayama HU-110 Sterilize alginate beads by steam
Beta-glycerophosphate Sigma Aldrich G9422
BMP-2 (Infuse Bone Graft Large II Kit)  Medtronic Sofarmor Danek, Memphis TN, USA 7510800 Osteogenic Growth  Factor,
 dialysis is needed to remove stabilizer component that interferes with FITC coupling
Carboxybenzoyl quinoline-2-Carboxaldehyde (CBQCA)  Thermo Fisher Scientific A-6222 To quantify NELL-1 protein
Cell Strainer (100µm) BD Science 352360 Hold PEC for ALP assay
Cell Scraper 290mm Bladewide 20mm SPL Life Science  90030 Detach the cell from 24 well plate 
CF 405S, Succinimidyl Ester Sigma Aldrich SCJ4600013 Blue fluorescent dye for protamine labelling
CF 594, Hydrazide Sigma Aldrich SCJ4600031 Deep red fluorescent dye for heparin labelling 
Centrifuge Beckman Coulter Microfuge 22R
Confocal Microscope Olympus  FV1000
Dexamethasone Sigma Aldrich D4902 Component of osteogenic growth medium
Dextran Desalting Columns Pierce (Thermo Scientific)  43230
DMEM Gibco  12320
BMP-2 Quantikine ELISA Kit R&D System DBP200 Determine BMP-2 release
Fetal Bovine Serum FBS Hyclone SV30160.03
Fluoescein Isothiocyananate, Isomer I Sigma Aldrich F7250 Green fluorescent dye for NELL-1 and BMP-2 labelling
ThinCert Cell Culture Inserts,
For 24 Well plates, Sterile
Greiner  662630 Prevents PEC wash out when
 changing osteogenic medium
Havard Appartus Syringe Pump (11 plus) Havard Apparatus 70-2208
n-Hexane (>99%) Sigma Aldrich 139386
Heparin Sigma Aldrich H3149 Binds with osteogenic
growth factor with heparin binding domain
Hydrochloric acid (37%) Merck 100317 Highly Corrosive
Incubator Binder C8150
MicroBCA Protein Assay kit Thermoscientific 23235
Microplate Reader Tecan Infinite M200 For ALP and microBCA assays
NELL-1 Aragen Bioscience Morgan Hill, CA, USA N/A Osteogenic growth factor, keep at -80˚C
Nisco cell encapsulator Nisco Engineering Inc Encapsulation unit VAR V1
Fluorescent Microscope Olympus IX71
mPCL-TCP Scaffold (Pore size is 1.3mm) Osteopore PCL-TCP 0/90 Hold PEC for in vivo study
Penicillin-Streptomycin 10,000 unit/ml, 100ml Hyclone Cell Culture SV30010 Antibiotic
10X Phosphate Buffered Saline (PBS)  Vivantis PB0344-1L 10x Solution, Ultra Pure Grade
Poly-L-Lysine MW 15,000-30,000 Sigma Aldrich P2568 Polycation
Protamine Sulfate salt, from Salmon Sigma Aldrich P4020 Polycation
Shaker Labnet S2025
Snakeskin Dialysis Tubing 3,500 MWCO 22mm x 35 feet Thermo Fisher Scientific 68035 Remove unreacted FITC by dialysis
Sodium Chloride Merck 1.06404.1000
Sodium Hydroxide Qrec S5158
Sodium Bicarbonate US Biological S4000 Buffer
Sodium carbonate Sigma Aldrich S7795-500G Buffer
Strontium Chloride Hexahydrate Sigma Aldrich 255521 Crosslinker for alginate
Spatula 3dia
5ml syringe Terumo 140425R Diameter of syringe
affects the flow rate 
75cm2 Cell Culture Flask Canted Neck Corning 730720
Toluidine Blue  Sigma Aldrich 52040 Heparin assay
Trypsin 1X Hyclone Cell Culture SH30042.01
Sodium alginate Novamatrix (FMC Biopolymer, Princeton, NJ) Pronova UPMVG Core material of microbeads

References

  1. Yuan, W., et al. NELL-1 based demineralized bone graft promotes rat spine fusion as compared to commercially available BMP-2 product. Orthop Sci. 18, 646-657 (2013).
  2. Anderson, C. L., Whitaker, M. C. Heterotopic ossification associated with recombinant human bone morphogenetic protein-2 (infuse) in posterolateral lumbar spine fusion: a case report. Spine. 37, 502-506 (2012).
  3. Glassman, S. D., et al. RhBMP-2 versus iliac crest bone graft for lumbar spine fusion: a randomized, controlled trial in patients over sixty years of age. Spine. 33, 2843-2849 (2008).
  4. Tannoury, C. A., An, H. S. Complications with the use of bone morphogenetic protein 2 (BMP-2) in spine surgery. Spine J. 14, 552-559 (2014).
  5. Carragee, E. J., Hurwitz, E. L., Weiner, B. K. A critical review of recombinant human bone morphogenetic protein-2 trials in spinal surgery: emerging safety concerns and lessons learned. Spine J. 11, 471-491 (2011).
  6. Abbah, S. A., Lam, C. X., Hutmacher, D. W., Goh, J. C., Wong, H. K. Biological performance of a polycaprolactone-based scaffold used as fusion cage device in a large animal model of spinal reconstructive surgery. Biomaterials. 30, 5086-5093 (2009).
  7. Abbah, S. A., Liu, J., Lam, R. W., Goh, J. C., Wong, H. K. In vivo bioactivity of rhBMP-2 delivered with novel polyelectrolyte complexation shells assembled on an alginate microbead core template. J. Control. Release. 162, 364-372 (2012).
  8. Wang, M., et al. Polyelectrolyte Complex Carrier Enhances Therapeutic Efficiency and Safety Profile of Bone Morphogenetic Protein-2 in Porcine Lumbar Interbody Fusion Model. Spine. 40, 964-973 (2015).
  9. Abbah, S. A., Lam, W. M., Hu, T., Goh, J., Wong, H. K. Sequestration of rhBMP-2 into self-assembled polyelectrolyte complexes promotes anatomic localization of new bone in a porcine model of spinal reconstructive surgery. Tissue Eng. Part A. 20, 1679-1688 (2014).
  10. Hu, T., et al. Novel Protamine-Based Polyelectrolyte Carrier Enhances Low-Dose rhBMP-2 in Posterolateral Spinal Fusion. Spine. 40, 613-621 (2015).
  11. Hu, J., Hou, Y., Park, H., Lee, M. Beta-tricalcium phosphate particles as a controlled release carrier of osteogenic proteins for bone tissue engineering. J Biomed Mater Res A. 100, 1680-1686 (2012).
  12. Darrabie, M. D., Kendall, W. F., Opara, E. C. Characteristics of Poly-L-Ornithine-coated alginate microcapsules. Biomaterials. 26, 6846-6852 (2005).
  13. Li, X., Min, S., Zhao, X., Lu, Z., Jin, A. Optimization of entrapping conditions to improve the release of BMP-2 from PELA carriers by response surface methodology. Biomed Mater. 10, 015002 (2015).
check_url/kr/54202?article_type=t

Play Video

Cite This Article
Wing Moon Lam, R., Abbah, S. A., Ming, W., Naidu, M., Ng, F., Tao, H., Goh Cho Hong, J., Ting, K., Hee Kit, W. Polyelectrolyte Complex for Heparin Binding Domain Osteogenic Growth Factor Delivery. J. Vis. Exp. (114), e54202, doi:10.3791/54202 (2016).

View Video