Summary

活微生物组共培养与人的微工程肠绒毛在肠道上一个芯片微流体装置

Published: August 30, 2016
doi:

Summary

我们描述的体外协议共同培养肠道微生物和小肠绒毛为使用人肠道上的单芯片microphysiological系统长时间。

Abstract

在这里,我们描述进行多品种的长期合作,培养人肠道微生物与人体肠道的单芯片器件microphysiological微工程小肠绒毛的协议。我们概括在一个微流体装置,其中,生理机械变形和流体剪切流动不断施加到模仿蠕动肠腔毛细管组织界面。在管腔微通道,人肠上皮细胞的Caco-2细胞进行培养,以形成一个“无菌”绒毛上皮和再生小肠绒毛。预培养的微生物细胞接种到腔侧建立主机的微生物生态系统。后的微生物细胞附着在绒毛的顶端表面,流体流动和机械变形被恢复,以产生一个稳定状态的微环境,其中新鲜培养基不断地供给和未结合的细菌(以及细菌废物)被连续除去。扩展共培养˚F后罗天至数周,找到多个小菌落被随机定位的绒毛之间,并且两者的微生物细胞和上皮细胞保持存活和功能的至少一个星期培养。我们的共培养协议可以适于提供用于可在各种人体器官中找到其他宿主微生物生态系统,其可人的微生物组中编排健康和疾病中的作用的体外研究促进通用平台。

Introduction

人体肠道窝藏微生物物种的一个惊人的多样化(<1000种)和微生物细胞的巨大数目(比人类宿主细胞的10倍)和基因(除人类基因组的100倍)1。这些人类微生物组起到代谢营养物和外源物,调节免疫应答,和维持肠稳态2关键作用。毫不奇怪,由于这些不同的功能,共生的肠道微生物广泛调节健康与疾病3。因此,了解肠道微生物与宿主-微生物相互作用的作用是非常重要的促胃肠(GI)的健康和探索新的治疗肠道疾病4。但是,现有的体外肠模型( 例如,静态培养物)限制宿主微生物共培养到的短时间(<1天),因为微生物细胞长满 ​​和妥协肠屏障功能5。替代动物模型( 例如,无菌的6或遗传工程小鼠7)也不会通常用于研究宿主肠道微生物串扰,因为殖民化和人类肠道微生物稳定维持都很难。

为了克服这些挑战,我们最近开发出一种仿生人“的肠道上一个芯片”microphysiological系统( 图1A,左)模拟发生在生活人体肠道5,8主机肠道微生物的相互作用。肠道上的单芯片微型包含由柔性,多孔,细胞外基质(ECM)涂覆的膜通过人类肠上皮Caco-2细胞内衬,模仿肠腔毛细管组织界面( 图1A分开的两个平行的微流体通道,吧)9。真空驱动的周期性节奏的变形引起的生理机械变形模仿的变化通常INDUC通过蠕动( 图1A,右图)主编。有趣的是,当Caco-2细胞在肠上的单芯片多100小时生长,它们自发地形成三维(3D)小肠绒毛与紧密连接,顶端刷状缘,不限于基底隐窝增殖性细胞,粘液产生,增加的药物代谢活性( 例如,细胞色素P450 3A4,CYP3A4),和增强的葡萄糖再摄取8。在这种“无菌”微环境,这是可能的共同培养的益生菌鼠李糖乳杆菌 GG或长达两周5,10-治疗地层与宿主上皮细胞益生菌细菌的混合物。

在这项研究中,我们描述了详细的协议,以在肠上的单芯片设备执行主机肠道微生物共培养延长的时间。此外,我们讨论的关键问题和潜在的挑战,要考虑这个主机微生物共培养p的广阔的应用rotocol。

Protocol

1.肠道的单芯片器件的微细加工注意:肠道上的单芯片是由透明的,透气的聚硅氧烷聚合物(聚二甲基硅氧烷,PDMS)制成的微流体器件,包含由柔性分隔的两个平行微通道(1毫米宽×150微米的高度×1厘米长)多孔(10微米孔径,25微米间距的孔到孔)PDMS膜5,9。制造肠道上的单芯片( 图1A,左)以下提供的步骤。 在肠道上的单芯片5,9的微细?…

Representative Results

为了模拟在体外人体肠道主机微生物生态系统,它是 必要开发一种实验协议来重建的生理条件,例如蠕动状力学和流体流动下肠道细菌和人肠上皮细胞的长期稳定的共培养。这里,我们利用仿生肠道上的单芯片微型 ( 图1A)共同培养生活在直接接触的微生物细胞用活的人体绒毛为或体外周的周期以上。在肠上皮细胞中自发地形成?…

Discussion

了解主机微生物的相互作用,是推进医药至关重要的;然而,在一个塑料盘或静态孔板进行传统的细胞培养模型不支持人肠细胞的稳定共培养与活肠道微生物超过1-2天,因为微生物细胞大多长满哺乳动物细胞在体外 。的过度生长的微生物数量迅速消耗氧气和营养物,随后产生代谢废物( 例如,有机酸),其严重危及肠屏障功能和引起肠上皮细胞死亡的量过多。因此,防止了导致营养?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We thank Sri Kosuri (Wyss Institute at Harvard University) for providing the GFP-labeled E. coli strain. This work was supported by the Defense Advanced Research Projects Agency under Cooperative Agreement Number W911NF-12-2-0036, Food and Drug Administration under contract #HHSF223201310079C, and the Wyss Institute for Biologically Inspired Engineering at Harvard University. The views and conclusions contained in this document are those of the authors and should not be interpreted as representing the official policies, either expressed or implied, of the Army Research Office, Army Research Laboratory, Food and Drug Administration, or the U.S. Government. The U.S. Government is authorized to reproduce and distribute reprints for Government purposes notwithstanding any copyright notation hereon.

Materials

Dulbecco's Modified Eagle Medium (DMEM) containing 25 mM glucose and 25 mM HEPES Gibco 10564-011 Warm it up at 37°C in a water bath.
Difco Lactobacilli MRS broth BD 288120 Run autoclave at 121°C for 15 min.
Poly(dimethylsiloxane) Dow Corning 3097358-1004 15:1 (w/w), PDMS : cureing agent
Caco-2BBE human colorectal carcinoma line Harvard Digestive Disease Center Human colorectal adenocarcinoma 
Heat-inactivated FBS Gibco 10082-147 20% (v/v) in DMEM
Trypsin/EDTA solution (0.05%) Gibco 25300-054 Warm it up at 37℃ in a water bath.
Penicillin-streptomycin-glutamine Gibco 10378-016 1/100 dilution in DMEM
4′,6-Diamidino-2-phenylindole dihydrochloride Molecular Probes D1306 Nuclei staining
Phalloidin-CF647 conjugate (25 units/mL) Biotium 00041 F-actin staining
Flexcell FX-5000 tension system Flexcell International Corporation FX5K Peristalsis-like stretcing motion (10% cell strain, 0.15 Hz frequency)
Inverted epifluorescence microscope Zeiss Axio Observer Z1 Imaging, DIC
Scanning confocal microscope Leica DMI6000 Imaging, Fluorescence
UVO Cleaner Jelight Company Inc 342 Surface activation of the gut-chip
Type I collagen  Gibco A10483-01 Extracellular matrix component for cell culture into the chip
Matrigel BD 354234 Extracellular matrix component for cell culture into the chip
1 mL disposable syringe BD 309628 Cell and media injection stuff
25G5/8 needle BD 329651 Cell and media injection stuff
Syringe pump Braintree Scientific Inc. BS-8000 Injection equipment into the chip
VSL#3 Sigma-Tau Pharmaceuticals 7-45749-01782-6 A formulation of 8 different commensal gut microbes
Reinforced Clostridial Medium BD 218081 Anaerobic bacteria culture medium
GasPak EZ Anaerobe Container System with Indicator BD 260001 Anaerobic gas generating sachet 
4% paraformaldehyde Electron Microscopy Science 157-4-100 Fixing the cells for staining
Triton X-100 Sigma-Aldrich T8787 Permeabilizing the cells
Bovine serum albumin Sigma-Aldrich A7030 Blocking agent for staining of the cells
Corona treater Electro-Technic Products BD-20AC Plasma generator for fabrication of the chip
Steriflip  Millipore SE1M003M00 Degasing the complete culture medium
Disposable hemocytometer iNCYTO DHC-N01 For manual cell counting

References

  1. Turnbaugh, P. J., et al. An obesity-associated gut microbiome with increased capacity for energy harvest. Nature. 444, 1027-1031 (2006).
  2. Tremaroli, V., Backhed, F. Functional interactions between the gut microbiota and host metabolism. Nature. 489, 242-249 (2012).
  3. Sekirov, I., Russell, S. L., Antunes, L. C. M., Brett Finlay, B. Gut Microbiota in Health and Disease. Physiol. Rev. 90, 859-904 (2010).
  4. Turnbaugh, P. J., et al. The human microbiome project. Nature. 449, 804-810 (2007).
  5. Kim, H. J., Huh, D., Hamilton, G., Ingber, D. E. Human gut-on-a-chip inhabited by microbial flora that experiences intestinal peristalsis-like motions and flow. Lab Chip. 12, 2165-2174 (2012).
  6. Round, J. L., Mazmanian, S. K. The gut microbiota shapes intestinal immune responses during health and disease. Nat Rev Immunol. 9, 313-323 (2009).
  7. Garrett, W. S., et al. Communicable ulcerative colitis induced by T-bet deficiency in the innate immune system. Cell. 131, 33-45 (2007).
  8. Kim, H. J., Ingber, D. E. Gut-on-a-Chip microenvironment induces human intestinal cells to undergo villus differentiation. Integr Biol. 5, 1130-1140 (2013).
  9. Huh, D., Kim, H. J., et al. Microfabrication of human organs-on-chips. Nat Protoc. 8, 2135-2157 (2013).
  10. Kim, H. J., Li, H., Collin, J. J., Ingber, D. E. Contributions of microbiome and mechanical deformation to intestinal bacterial overgrowth and inflammation in a human gut-on-a-chip. Proc. Natl. Acad. Sci. 113, E7-E15 (2016).
  11. Miller, W. G., Lindow, S. E. An improved GFP cloning cassette designed for prokaryotic transcriptional fusions. Gene. 191, 149-153 (1997).
  12. Odijk, M., et al. Measuring direct current trans-epithelial electrical resistance in organ-on-a-chip microsystems. Lab Chip. 15, 745-752 (2015).
  13. Lentle, R. G., Janssen, P. W. Physical characteristics of digesta and their influence on flow and mixing in the mammalian intestine: a review. J Comp Physiol B. 178, 673-690 (2008).
  14. Granato, D., et al. Cell surface-associated lipoteichoic acid acts as an adhesion factor for attachment of Lactobacillus johnsonii La1 to human enterocyte-like Caco-2 cells. Appl Environ Microbiol. 65, 1071-1077 (1999).
  15. Dewhirst, F. E., et al. The human oral microbiome. J Bacteriol. 192, 5002-5017 (2010).
  16. Grice, E. A., Segre, J. A. The skin microbiome. Nat Rev Microbiol. 9, 244-253 (2011).
  17. Hay, P. E., et al. Abnormal bacterial colonisation of the genital tract and subsequent preterm delivery and late miscarriage. Br Med J. 308, 295-298 (1994).
check_url/kr/54344?article_type=t

Play Video

Cite This Article
Kim, H. J., Lee, J., Choi, J., Bahinski, A., Ingber, D. E. Co-culture of Living Microbiome with Microengineered Human Intestinal Villi in a Gut-on-a-Chip Microfluidic Device. J. Vis. Exp. (114), e54344, doi:10.3791/54344 (2016).

View Video