Summary

的快速方法新颖的RNA结合蛋白隔离

Published: September 30, 2016
doi:

Summary

RNA-protein interactions lie at the heart of many cellular processes. Here, we describe an in vivo method to isolate specific RNA and identify novel proteins that are associated with it. This could shed new light on how RNAs are regulated in the cell.

Abstract

RNA-binding proteins (RBPs) play important roles in every aspect of RNA metabolism and regulation. Their identification is a major challenge in modern biology. Only a few in vitro and in vivo methods enable the identification of RBPs associated with a particular target mRNA. However, their main limitations are the identification of RBPs in a non-cellular environment (in vitro) or the low efficiency isolation of RNA of interest (in vivo). An RNA-binding protein purification and identification (RaPID) methodology was designed to overcome these limitations in yeast and enable efficient isolation of proteins that are associated in vivo. To achieve this, the RNA of interest is tagged with MS2 loops, and co-expressed with a fusion protein of an MS2-binding protein and a streptavidin-binding protein (SBP). Cells are then subjected to crosslinking and lysed, and complexes are isolated through streptavidin beads. The proteins that co-purify with the tagged RNA can then be determined by mass spectrometry. We recently used this protocol to identify novel proteins associated with the ER-associated PMP1 mRNA. Here, we provide a detailed protocol of RaPID, and discuss some of its limitations and advantages.

Introduction

RNA结合蛋白(限制性商业惯例)表示S的约10% 酵母蛋白1,2和哺乳动物蛋白质3-5的约15%。它们被牵连在许多细胞过程如mRNA转录后加工和调节,翻译,核糖体合成,tRNA的氨酰化和修饰,染色质重塑,以及更多。限制性商业做法的一个重要子群mRNA的结合蛋白(mRNPs)6,7。 mRNA中的成熟的过程中,不同的限制性商业惯例结合转录并介导其核加工,出口出来的细胞核,细胞定位,翻译和降解6-8。因此,不同的组在任何时间点绑定到特定的成绩单的限制性商业惯例决定了它的加工和最终的命运。

与基因相关的限制性商业惯例的识别可以显著提高我们的基本的转录后调控过程的了解。不同遗传,微观,生化和生物信息学方法已经用于鉴定参与mRNA调节(在9-11中综述)蛋白。然而,只有少数的这些方法能够与特定的靶mRNA相关的蛋白质的鉴定。值得注意的是,酵母三杂交系统(Y3H),它利用的利益为诱饵mRNA的筛选在酵母细胞中的表达文库。阳性克隆通常是通过培养来选择或记者表达12-14观察。该方法的主要优点是大量可在细胞环境和测量RNA的蛋白质相互作用的强度的能力被扫描的蛋白质。缺点包括相对大量的由于非特异性结合假阳性结果,而对于由于假阴性结果,部分地融合蛋白猎物或诱饵的RNA的错折叠的高电位。

遗传方式的替代方法是亲和力洁净工作台其相关的蛋白的RNA的阳离子。聚A含的mRNA可以通过使用寡聚dT柱进行分离,并且它们的相关的蛋白质通过质谱法进行检测。的RNA-蛋白质相互作用是通过交联的细胞环境,这使得短程共价键是保守的。使用寡聚dT柱产生了与任何含有聚A-mRNA的3,5,15相关的整个蛋白质组的全局视图。但是,这并不能提供与特定的mRNA相关蛋白质的列表。很少方法可用来实现这种识别。该对方法需要核酸与互补性与靶mRNA 16,17的转染。核酸也附连到的肽,其允许交联到限制性商业惯例中紧挨着的相互作用位点。交联后,RBP肽 – 核酸可以分离并进行蛋白质组分析。最近,基于适体的方法是成功地应用到从哺乳动物细胞系18中提取。用链霉改善的亲和力的RNA适体的开发和融合于(在这种情况下,富含AU的元件(ARE))感兴趣的序列。适体 – ARE的RNA附着在链霉抗珠粒并用细胞裂解物混合。与该ARE序列相关联的蛋白质纯化,并通过质谱(MS)来识别。虽然这种方法检测的蜂窝设置( 在体外 )外面发生关联,则很可能在将来被修改,以便引入适体到基因组中,从而使蛋白质与表达相关的隔离,而在细胞环境( 体内 )。在酵母中,其中的遗传操作已经非常成熟,快速的方法(以教授杰夫·Gerst的实验室开发)提供了在体内协会19的观点。快速融合了专用性强的MS2外壳蛋白的结合(MS2-CP)的MS2 RNA序列,和的链霉抗结合结构域(SBP)到链霉偶联珠。这使MS2标记mRNA的高效净化通过链霉珠。此外,的MS2环12份表达式允许多达六个MS2-CP的同时结合到RNA和提高其隔离的效率。因此该协议建议,使新颖的mRNA相关蛋白的鉴定一次洗脱的样品通过质谱法进行蛋白组学分析。

我们最近利用快速识别与酵母PMP1 mRNA的20相关联的新的蛋白质。PMP1 mRNA的先前显示与ER膜相关联,并且其3'非翻译区(UTR)被认为是在此关联21的主要决定因素。因此,结合PMP1 3'非编码区限制性商业惯例有可能在其定位可发挥重要的作用。快速接着液相色谱的y质谱/质谱(LC-MS / MS)导致与PMP1 20相互作用的许多新的蛋白质的鉴定。在此,我们提供的快速方法的详细的协议,做需要的重要的控制,这可能提高产量和特异性的技术技巧。

Protocol

注意:插入由12 MS2结合位点的序列(MS2循环; MS2L)成所需的基因组基因座,通常是开放读框(ORF)和3'非编码区之间。这种集成的详细协议,其他22提供。验证通过PCR,Northern分析或RT-PCR 20,23正常插入和表达。它以验证该积分不与3'UTR的合成干预是重要的。此外,诱导型启动子(蛋氨酸耗竭)的表达下熔合到SBP的质粒表达MS2-CP也应导入细胞24。相同的菌株,不含所引入?…

Representative Results

迅速使与其相关的蛋白质的特定的靶RNA的分离。临界其成功是保持所述RNA完整尽可能,由此获得的蛋白质的足够量。为了确定RNA的分离效率和质量,Northern分析进行( 图1A)。 Northern分析具有直接向快速的效率和质量的优点。因此,全长和降解产物的相对量可以在单次运行来确定。核糖体RNA(个rRNA)是在溴化乙锭染色容易地检测,和洗脱样品中的缺少个rRNA的?…

Discussion

各种方法使用特定的mRNA的分离,以确定它们相关的蛋白质11,34 35。这些方法适用体外体内的策略来探测RNA-蛋白的相互作用。 体外方法孵育外生转录的RNA与细胞裂解物来捕获限制性商业惯例和隔离RNP复合物36,37。这种类型的一个有效的方法最近被提出,这使能结合一个调控RNA基序18新蛋白质的鉴定。这些方法的缺点是非特异性限制性?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

我们感谢教授杰夫·Gerst和鲍里斯Slobodin在建立快速协议,并提供必要的质粒的有益的建议。我们也感谢Avigail ATIR-兰德博士为她建立从Smoler蛋白质组学中心这个协议和添马舰谢夫博士她与LC-MS / MS分析帮帮忙。我们感谢TG Kinzy教授(罗格斯)为YEF3抗体。这项工作是由来自两国科学基金资助2011013支持。

Materials

Tris sigma T1503
SDS bio-lab 1981232300
DTT sigma D9779
Acidic Phenol (pH 4.3) sigma P4682
Acidic Phenol: Chloroform (5:1, pH 4.3) sigma P1944
Chloroform bio-lab 3080521
Formaldehyde Frutarom 5551820
Glycine sigma G7126
NP-40 Calbiochem 492016
Heparin Sigma H3393
Phenylmethylsulfonyl Flouride (PMSF) Sigma P7626
Leupeptin Sigma L2884
Aprotinin Sigma A1153
Soybean Trypsin Inhibitor Sigma T9003
Pepstatin Sigma P5318
DNase I Promega M610A
Ribonuclease  Inhibitor Takara 2313A
Glass Beads Sartorius BBI-8541701 0.4-0.6mm diameter 
Mini BeadBeater BioSpec Mini BeadBeater 16
Guanidinium Sigma G4505
Avidin Sigma A9275
Streptavidin Beads GE Healthcare  17-5113-01
Bovine serum albumin (BSA) Sigma A7906
Yeast tRNA Sigma R8508
Biotin Sigma B4501
Yeast extract Bacto 288620
peptone Bacto 211677
Glucose Sigma G8270
1 x Phosphate-Buffered saline (PBS)
0.2 M NaOH
4 x Laemmli Sample Buffer (LSB) 0.2 M Tris-Hcl pH 6.8, 8% SDS, 0.4 M DTT, 40% glycerol, 0.04% Bromophenol-Blue.
Hot phenol lysis buffer 10 mM Tris pH 7.5, 10 mM EDTA, 0.5% SDS 
3 M Sodium Acetate pH 5.2
100% and 70% Ethanol (EtOH)
RNase-free water
RaPID lysis buffer 20 mM Tris pH 7.5, 150 mM NaCl, 1.8 mM MgCl2, 0.5% NP-40, 5 mg/ml Heparin, 1 mM Dithiothreitol (DTT), 1 mM Phenylmethylsulfonyl Flouride (PMSF), 10 µg/ml Leupeptin, 10 µg/ml Aprotinin, 10 µg/ml Soybean Trypsin Inhibitor, 10 µg/ml Pepstatin, 20 U/ml DNase I, 100 U/ml Ribonuclease  Inhibitor.
2x Cross-linking reversal buffer 100 mM Tris pH 7.4, 10 mM EDTA, 20 mM DTT, 2 % SDS.
RaPID wash buffer 20 mM Tris-HCl pH 7.5,  300 mM NaCl, 0.5% NP-40
0.5 M EDTA pH 8
Silver Stain Plus Kit Bio-Rad  161-0449 For detecting proteins in polyacrylamide gels
SD selective medium  1.7 g/l Yeast nitrogen base with out amino acids and ammonium sulfate, 5 g/l Ammonium sulfate, 2% glucose, 350 mg/l Threonine, 40 mg/l Methionine, 40 mg/l Adenine, 50 mg/l Lysine, 50 mg/l Tryptophan, 20 mg/l Histidine, 80 mg/l Leucine, 30 mg/l Tyrosine, 40 mg/l Arginine
Anti-eEF3 (EF3A,YEF3) Gift from Kinzy TG. (UMDNJ Robert Wood Johnson Medical School) 1:5,000
Anti GFP antibody Santa Cruz sc-8334 1:3,000
Anti rabbit IgG-HRP conjugated SIGMA A9169 1:10,000

References

  1. Hogan, D. J., Riordan, D. P., Gerber, A. P., Herschlag, D., Brown, P. O. Diverse RNA-binding proteins interact with functionally related sets of RNAs, suggesting an extensive regulatory system. PLoS Biol. 6, e255 (2008).
  2. Tsvetanova, N. G., Klass, D. M., Salzman, J., Brown, P. O. Proteome-wide search reveals unexpected RNA-binding proteins in Saccharomyces cerevisiae. PloS One. 5, (2010).
  3. Castello, A., et al. Insights into RNA biology from an atlas of mammalian mRNA-binding proteins. Cell. 149, 1393-1406 (2012).
  4. Gerstberger, S., Hafner, M., Tuschl, T. A census of human RNA-binding proteins. Nat Rev Genet. 15, 829-845 (2014).
  5. Baltz, A. G., et al. The mRNA-bound proteome and its global occupancy profile on protein-coding transcripts. Mol Cell. 46, 674-690 (2012).
  6. Mitchell, S. F., Parker, R. Principles and properties of eukaryotic mRNPs. Mol Cell. 54, 547-558 (2014).
  7. Licatalosi, D. D., Darnell, R. B. RNA processing and its regulation: global insights into biological networks. Nat Rev Genet. 11, 75-87 (2010).
  8. Eliyahu, E., Lesnik, C., Arava, Y. The protein chaperone Ssa1 affects mRNA localization to the mitochondria. FEBS Lett. 586, 64-69 (2012).
  9. Ascano, M., Gerstberger, S., Tuschl, T. Multi-disciplinary methods to define RNA-protein interactions and regulatory networks. Curr Opin Genet Dev. 23, 20-28 (2013).
  10. Denman, R. B. mRNPs take shape by CLIPPING and PAIRING. BioEssays. 28, 1132-1143 (2006).
  11. McHugh, C. A., Russell, P., Guttman, M. Methods for comprehensive experimental identification of RNA-protein interactions. Genome Biol. 15, 203 (2014).
  12. Bernstein, D. S., Buter, N., Stumpf, C., Wickens, M. Analyzing mRNA-protein complexes using a yeast three-hybrid system. Methods. 26, 123-141 (2002).
  13. SenGupta, D. J., et al. A three-hybrid system to detect RNA-protein interactions in vivo. Proc Natl Acad Sci USA. 93, 8496-8501 (1996).
  14. Yosefzon, Y., et al. Divergent RNA binding specificity of yeast Puf2p. RNA. 17, 1479-1488 (2011).
  15. Mitchell, S. F., Jain, S., She, M., Parker, R. Global analysis of yeast mRNPs. Nat Struct Mol Biol. 20, 127-133 (2013).
  16. Zielinski, J., et al. In vivo identification of ribonucleoprotein-RNA interactions. Proc Natl Acad Sci USA. 103, 1557-1562 (2006).
  17. Bell, T. J., Eberwine, J. Live Cell Genomics: RNA Exon-Specific RNA-Binding Protein Isolation. Methods Mol Biol. 1324, 457-468 (2015).
  18. Leppek, K., Stoecklin, G. An optimized streptavidin-binding RNA aptamer for purification of ribonucleoprotein complexes identifies novel ARE-binding proteins. Nucleic Acids Res. 42, e13 (2014).
  19. Slobodin, B., Gerst, J. E. A novel mRNA affinity purification technique for the identification of interacting proteins and transcripts in ribonucleoprotein complexes. RNA. 16, 2277-2290 (2010).
  20. Samra, N., Atir-Lande, A., Pnueli, L., Arava, Y. The elongation factor eEF3 (Yef3) interacts with mRNA in a translation independent manner. BMC Mol Biol. 16, 17 (2015).
  21. Loya, A., et al. The 3′-UTR mediates the cellular localization of an mRNA encoding a short plasma membrane protein. RNA. 14, 1352-1365 (2008).
  22. Haim-Vilmovsky, L., Gadir, N., Herbst, R. H., Gerst, J. E. A genomic integration method for the simultaneous visualization of endogenous mRNAs and their translation products in living yeast. RNA. 17, 2249-2255 (2011).
  23. Eldad, N., Yosefzon, Y., Arava, Y. Identification and characterization of extensive intra-molecular associations between 3′-UTRs and their ORFs. Nucleic Acids Res. 36, 6728-6738 (2008).
  24. Slobodin, B., Gerst, J. E. RaPID: an aptamer-based mRNA affinity purification technique for the identification of RNA and protein factors present in ribonucleoprotein complexes. Methods Mol Biol. 714, 387-406 (2011).
  25. Schmitt, M. E., Brown, T. A., Trumpower, B. L. A rapid and simple method for preparation of RNA from Saccharomyces cerevisiae. Nucleic Acids Res. 18, 3091-3092 (1990).
  26. Eldad, N., Arava, Y. A ribosomal density-mapping procedure to explore ribosome positions along translating mRNAs. Methods Mol Biol. 419, 231-242 (2008).
  27. Arava, Y., Seger, R., Fbeta Walker, M. D. GRFbeta, a novel regulator of calcium signaling, is expressed in pancreatic beta cells and brain. J Biol Chem. 274, 24449-24452 (1999).
  28. Arava, Y., Adamsky, K., Ezerzer, C., Ablamunits, V., Walker, M. D. Specific gene expression in pancreatic beta-cells: cloning and characterization of differentially expressed genes. Diabetes. 48, 552-556 (1999).
  29. Bavli-Kertselli, I., Melamed, D., Bar-Ziv, L., Volf, H., Arava, Y. Overexpression of eukaryotic initiation factor 5 rescues the translational defect of tpk1w in a manner that necessitates a novel phosphorylation site. FEBS J. 282, 504-520 (2015).
  30. Eliyahu, E., Melamed, D., Arava, Y. Genome-wide analysis of RNA extracted from isolated mitochondria. Methods Mol Biol. 714, 287-299 (2011).
  31. Brunelle, J. L., Green, R. One-dimensional SDS-polyacrylamide gel electrophoresis (1D SDS-PAGE). Methods Enzymol. 541, 151-159 (2014).
  32. Gundry, R. L., et al. Preparation of proteins and peptides for mass spectrometry analysis in a bottom-up proteomics workflow. Current protocols in molecular biology. Chapter 10, Unit 10.25 (2009).
  33. Medzihradszky, K. F. In-solution digestion of proteins for mass spectrometry. Methods Enzymol. 405, 50-65 (2005).
  34. Bachler, M., Schroeder, R., von Ahsen, U. StreptoTag: a novel method for the isolation of RNA-binding proteins. RNA. 5, 1509-1516 (1999).
  35. Oeffinger, M. Two steps forward–one step back: advances in affinity purification mass spectrometry of macromolecular complexes. Proteomics. 12, 1591-1608 (2012).
  36. Ross, A. F., Oleynikov, Y., Kislauskis, E. H., Taneja, K. L., Singer, R. H. Characterization of a beta-actin mRNA zipcode-binding protein. Mol Cell Biol. 17, 2158-2165 (1997).
  37. Deshler, J. O., Highett, M. I., Schnapp, B. J. Localization of Xenopus Vg1 mRNA by Vera protein and the endoplasmic reticulum. Science. 276, 1128-1131 (1997).
  38. Bertrand, E., et al. Localization of ASH1 mRNA particles in living yeast. Mol Cell. 2, 437-445 (1998).
  39. Aizer, A., et al. Quantifying mRNA targeting to P-bodies in living human cells reveals their dual role in mRNA decay and storage. J Cell Sci. 127, 4443-4456 (2014).
  40. Gadir, N., Haim-Vilmovsky, L., Kraut-Cohen, J., Gerst, J. E. Localization of mRNAs coding for mitochondrial proteins in the yeast Saccharomyces cerevisiae. RNA. 17, 1551-1565 (2011).
  41. Lopez de Heredia, ., M, R. P., Jansen, RNA integrity as a quality indicator during the first steps of RNP purifications : a comparison of yeast lysis methods. BMC Biochem. 5, 14 (2004).
  42. Lee, J. S., Kallehauge, T. B., Pedersen, L. E., Kildegaard, H. F. Site-specific integration in CHO cells mediated by CRISPR/Cas9 and homology-directed DNA repair pathway. Sci Rep. 5, 8572 (2015).
  43. Auer, T. O., Duroure, K., De Cian, A., Concordet, J. P., Del Bene, F. Highly efficient CRISPR/Cas9-mediated knock-in in zebrafish by homology-independent DNA repair. Genome Res. 24, 142-153 (2014).
  44. Oda, Y., Huang, K., Cross, F. R., Cowburn, D., Chait, B. T. Accurate quantitation of protein expression and site-specific phosphorylation. Proc Natl Acad Sci USA. 96, 6591-6596 (1999).
  45. de Godoy, L. M. SILAC yeast: from labeling to comprehensive proteome quantification. Methods Mol Biol. 1156, 81-109 (2014).
check_url/kr/54467?article_type=t

Play Video

Cite This Article
Samra, N., Arava, Y. Novel RNA-Binding Proteins Isolation by the RaPID Methodology. J. Vis. Exp. (115), e54467, doi:10.3791/54467 (2016).

View Video