Summary

Kolorimetrisk detektion av bakterier med användning avgörande provet

Published: September 17, 2016
doi:

Summary

We describe a protocol for colorimetric detection of E. coli using a modified litmus test that takes advantage of an RNA-cleaving DNAzyme, urease, and magnetic beads.

Abstract

There are increasing demands for simple but still effective methods that can be used to detect specific pathogens for point-of-care or field applications. Such methods need to be user-friendly and produce reliable results that can be easily interpreted by both specialists and non-professionals. The litmus test for pH is simple, quick, and effective as it reports the pH of a test sample via a simple color change. We have developed an approach to take advantage of the litmus test for bacterial detection. The method exploits a bacterium-specific RNA-cleaving DNAzyme to achieve two functions: recognizing a bacterium of interest and providing a mechanism to control the activity of urease. Through the use of magnetic beads immobilized with a DNAzyme-urease conjugate, the presence of bacteria in a test sample is relayed to the release of urease from beads to solution. The released urease is transferred to a test solution to hydrolyze urea into ammonia, resulting in an increase of pH that can be visualized using the classic litmus test.

Introduction

Bacterial pathogens are one of the major causes of global morbidity and mortality. Outbreaks from hospital-acquired infections, food-borne pathogens, and bacterial contaminants in the environment pose serious and on-going threats to public health and safety. To prevent these outbreaks, effective tools are needed that permit pathogen detection in a timely fashion under a variety of settings. Simple but still effective tests that are portable and cost-effective are greatly coveted, especially in regions that are susceptible to outbreaks but cannot afford expensive testing facilities.1-3 Although there exists a multitude of methods to detect bacteria, many of them are not suitable as screening or on-site testing tools because they require long test times, expensive instruments and complicated testing procedures.

Colorimetric tests are particularly attractive for point-of-care or field applications as color changes can be easily detected by the naked eye. The litmus test for pH is simple, quick, and effective. Although it is a very old technology, it is still widely used today because of its simplicity and effectiveness. Surprisingly, this simple test had never been modified to achieve the detection of other analytes before we recently developed an approach of modifying this test for E. coli testing.4

The expanded litmus test for E. coli employs three additional components: an E. coli activated RNA-cleaving DNAzyme (EC1), 5 urease, and magnetic beads. DNAzymes refer to synthetic single-stranded DNA molecules with catalytic activity.6 They can be isolated from random-sequence DNA pools using in vitro selection.7,8 They are highly stable and can be produced cost-effectively using high-efficiency automated DNA synthesis.9 For these reasons, DNAzymes, particularly RNA-cleaving DNAzymes, have been widely examined for biosensing applications.6,10,11 RNA-cleaving DNAzyme sensors have been developed to detect metal ions,12-16 small molecules,17,18 bacterial pathogens5,19-21 and cancer cells.22 Given the great availability of target-induced RNA-cleaving DNAzymes, any assay that utilizes a DNAzyme can be potentially expanded to detect a diverse range of analytes.

Urease is chosen for its ability to hydrolyze urea into ammonia,23,24 resulting in a pH increase. Urease is also highly efficient, stable and amenable for conjugation to other biomolecules. Therefore, we postulated that a conjugate of an RNA-cleavage DNAzyme with urease would allow the use of litmus test for the detection of other targets.5

The action of the RNA-cleaving DNAzyme is relayed to urease-mediated increase of pH through the use of magnetic beads that are immobilized with the DNAzyme-urease conjugate. Because the activity of the DNAzyme under investigation is strictly dependent on E. coli, the presence of this bacterium in the test solution will result in the release of urease from the magnetic beads to the solution, which is then taken and used to hydrolyze urea in a reporter solution that contains a pH-sensitive dye. The final outcome of this procedure is a color change that can be conveniently reported by the dye or pH paper.

Protocol

1. Beredning av reagenser och buffertar 0,5 M etylendiamintetraättiksyra (EDTA) I en 2 liter bägare, tillsätt 186,1 g EDTA till 800 ml avjoniserat-destillerat vatten (DDH 2 O). Justera pH i lösningen till 8,0 med användning av NaOH-pellets. Lägg DDH 2 O till en slutlig volym av 1,0 L och överför lösningen till en autoklaverbar glasflaska för autoklavering och förvara vid 4 ° C. 10 × Tris-borat EDTA (10x TBE) I en 4 L plastbägare, tills?…

Representative Results

Principen för den bakteriella lackmustest förklaras i figur 1 Testet använder tre viktiga material:. En RNA-klyvning DNAzyme som aktiveras av en specifik bakterie, ureas och magnetiska pärlor. Den DNAzyme används som den molekylära igenkänningselement för att uppnå höggradigt specifik detektion av en bakterie av intresse. Ureas och magnetiska pärlor används för att uppnå signalöverföring av RNA-klyvningsaktivitet av DNAzyme. Detta innebär att man skapar …

Discussion

Översättningen av verkan av RNA-klyvningsaktivitet av en bakterie-responsiv DNAzyme till ett avgörande prov möjliggörs genom användning av ureas och magnetisk separation, vilket framgår av figur 1. Även om den demonstration av den modifierade litmustest för bakteriell detektion är gjort med en E. coli -beroende RNA-klyvning DNAzyme, 5,19,20 konstruktionen kan i allmänhet förlängas något RNA-klyvning DNAzyme. Med tanke på den stora tillgången på RNA-klyvning DNAzymes …

Disclosures

The authors have nothing to disclose.

Acknowledgements

The funding for this research project was provided by the Natural Sciences and Engineering Research Council of Canada (NSERC) via a Discovery Grant to YL.

Materials

Ethylenediaminetetraacetic acid (EDTA) VWR AMRESCO 0105
Sodium Hydroxide (NaOH) pellets BIO BASIC CANADA INC. SB6789
Tris-base VWR AMRESCO 0497
Boric acid AMRESCO 0588
Urea VWR AMRESCO M123
40% acrylamide/bisacrylamide (29:1) solution BIO BASIC CANADA INC. A0007
Sucrose Bioshop Canada inc. SUC507
Bromophenol blue Bioshop Canada inc. BRO777
Xylenecyanol FF SIGMA-ALDRICH X-4126
10% sodium dodecyl sulfate Bioshop Canada inc. SDS001
Hydrochloric Acid (HCl) CALEDON LABORATORIES LTD 6026
Sodium Chloride (NaCl) Bioshop Canada inc. SOD001
4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid (HEPES) Bioshop Canada inc. HEP001
Magnesium Chloride (II) hexahydrate VWR AMRESCO 0288
Tween 20 Bioshop Canada inc. TW508
Adenosine Triphospahte (ATP) AMRESCO 0220
Sodium Acetate trihydrate (NaOAc) SIGMA-ALDRICH S8625
Ethanol Commercial Alcohols P016EAAN
Tetramethyleneethylenediamine (TEMED) AMRESCO 0761
10% Ammonium persulfate (APS) BIO BASIC CANADA INC. AB0072
Succinimidyl 4-(N-maleimidomethyl) cyclohexane-1-carboxylate (SMCC) ThermoFisher SCIENTIFIC 22360
Dimethyl sulfoxide (DMSO) CALEDON LABORATORIES 803540
Urease SIGMA-ALDRICH U0251
1× Phosphate Buffered Saline (PBS) ThermoFisher SCIENTIFIC 70011-069
0.04% Phenol red SIGMA-ALDRICH P3532
10×T4 polynucleotide kinase reaction buffer Lucigen 30061-1
10× T4 DNA ligase reaction buffer Bio Basics Canada B1122-B
T4 DNA ligase (5 U/uL) Thermo Fischer Scientific B1122
Luria Bertani (LB) Broth AMRESCO J106
Agar AMRESCO J637
T4 polynucleotide kinase (10 U/uL) Lucigen 30061-1
E. coli K12 (MG1655) ATCC ATCC700926
Centrifuge Beckman Coulter, Inc. 392187
Glass plates CBS scientific ngp-250nr
0.75 mm thick spacers CBS scientific VGS-0725r
12-well comb CBS scientific VGC-7512
UV Lamp UVP 95-0017-09
Spectrophotometer (NanoVue) GE Healthcare N/A
Metal plate CBS scientific CPA165-250
Vortex VWR International 58816-123
Gel electrophoresis apparatus CBS scientific ASG-250
Petri dishes VWR International 25384-342
100 kDa MWCO centrifugal filters EMD Millipore UFC510024
Magnetic Bead (BioMag) Bangs Laboratories Inc BM568
Magnetic Seperation Rack New England BioLabs S1506S
Microfuge tubes Sarstedt 72.69
Syringe filter (0.22 um) VWR International 28145-501
14 mL culture tube VWR International 60818-725
Cell culture incubator Eppendorf Scientific M13520000
Branson Ultrasonic cleaner Branson N/A
Camera (Canon Powershot G11) Canon N/A
50 mL conical tube VWR International 89004-364

References

  1. Daar, A. S., et al. Top ten biotechnologies for improving health in developing countries. Nat. Genet. 32, 229-232 (2002).
  2. Newman, J. D., Turner, A. P. Home blood glucose biosensors: a commercial perspective. Biosens. Bioelectron. 20, 2435-2453 (2005).
  3. Turner, A. P. Biosensors: sense and sensibility. Chem. Soc. Rev. 42, 3184-3196 (2013).
  4. Tram, K., Kanda, P., Salena, B. J., Huan, S. Y., Li, Y. F. Translating Bacterial Detection by DNAzymes into a Litmus Test. Angew. Chem. Int. Ed. 53, 12799-12802 (2014).
  5. Ali, M. M., Aguirre, S. D., Lazim, H., Li, Y. Fluorogenic DNAzyme probes as bacterial indicators. Angew. Chem. Int. Ed. 50, 3751-3754 (2011).
  6. Schlosser, K., Li, Y. Biologically inspired synthetic enzymes made from DNA. Chem. Biol. 16, 311-322 (2009).
  7. Tuerk, C., Gold, L. Systematic evolution of ligand by exponential enrichment: RNA ligands to bacteriophage T4 DNA polymerase. Science. 249, 505-510 (1990).
  8. Ellington, A. D., Szostak, J. W. In vitro selection of RNA molecules that bind specific ligands. Nature. 346, 818-822 (1990).
  9. Breaker, R. R. Making catalytic DNAs. Science. 290, 2095-2096 (2000).
  10. Liu, J., Cao, Z., Lu, Y. Functional nucleic acid sensors. Chem. Rev. 109, 1948-1998 (2009).
  11. Navani, N. K., Li, Y. Nucleic acid aptamers and enzymes as sensors. Curr. Opin. Chem. Biol. 10, 272-281 (2006).
  12. Li, J., Lu, Y. A highly sensitive and selective catalytic DNA biosensor for lead ions. J. Am. Chem. Soc. 122, 10466-10467 (2000).
  13. Liu, J., Lu, Y. A colorimetric lead biosensor using DNAzyme-directed assembly of gold nanoparticles. J. Am. Chem. Soc. 125, 6642-6643 (2003).
  14. Liu, Z., Mei, S. H. J., Brennan, J. D., Li, Y. Assemblage of signaling DNA enzymes with intriguing metal specificity and pH dependence. J. Am. Chem. Soc. 125, 7539-7545 (2003).
  15. Liu, J., et al. A catalytic beacon sensor for uranium with parts-per-trillion sensitivity and millionfold selectivity. Proc. Natl. Acad. Sci. USA. 104, 2056-2061 (2007).
  16. Huang, P. J., Vazin, M., Liu, J. In vitro selection of a new lanthanide-dependent DNAzyme for ratiometric sensing lanthanides. Anal. Chem. 86, 9993-9999 (2014).
  17. Chiuman, W., Li, Y. Simple fluorescent sensors engineered with catalytic DNA ‘MgZ’ based on a non-classic allosteric design. PLoS One. 2, e1224 (2007).
  18. Xiang, Y., Lu, Y. Using personal glucose meters and functional DNA sensors to quantify a variety of analytical targets. Nat. Chem. 3, 697-703 (2011).
  19. Aguirre, S. D., Ali, M. M., Salena, B. J., Li, Y. A sensitive DNA enzyme-based fluorescent assay for bacterial detection. Biomolecules. 3, 563-577 (2013).
  20. Aguirre, S. D., Ali, M. M., Kanda, P., Li, Y. F. Detection of Bacteria Using Fluorogenic DNAzymes. J. Vis. Exp. (63), e3961 (2012).
  21. Shen, Z., et al. A catalytic DNA activated by a specific strain of bacterial pathogen. Angew. Chem. Int. Ed. 54, (2015).
  22. He, S., et al. Highly specific recognition of breast tumors by an RNA-cleaving fluorogenic DNAzyme probe. Anal. Chem. 87, 569-577 (2015).
  23. Sumner, J. B., Hand, D. B. Isoelectric point of crystalline urease. J. Am. Chem. Soc. 51, 1255-1260 (1929).
  24. Karplus, P. A., Pearson, M., Hausinger, R. P. 70 Years of crystalline urease: What have we learned. Acc. Chem. Res. 30, 330-337 (1997).
  25. Omiccioli, E., Amagliani, G., Brandi, G., Magnani, M. A new platform for Real-Time PCR detection of Salmonella spp., Listeria monocytogenes and Escherichia coli O157 in milk. Food Microbiol. 26, 615-622 (2009).
  26. Cui, S., Schroeder, C. M., Zhang, D. Y., Meng, J. Rapid sample preparation method for PCR-based detection of Escherichia coli O157:H7 in ground beef. J. Appl. Microbiol. 95, 129-134 (2003).
  27. Ibekwe, A. M., Watt, P. M., Grieve, C. M., Sharma, V. K., Lyons, S. R. Multiplex fluorogenic real-time PCR for detection and quantification of Escherichia coli O157:H7 in dairy wastewater wetlands. Appl. Environ. Microbiol. 68, 4853-4862 (2002).
  28. Strachan, N. J., Ogden, I. D. A sensitive microsphere coagulation ELISA for Escherichia coli O157:H7 using Russell’s viper venom. FEMS Microbiol Lett. 186, 79-84 (2000).
  29. de Boer, E., Beumer, R. R. Methodology for detection and typing of foodborne microorganisms. Int. J. Food Microbiol. 50, 119-130 (1999).
  30. Gracias, K. S., McKillip, J. L. A review of conventional detection and enumeration methods for pathogenic bacteria in food. Can. J. Microbiol. 50, 883-890 (2004).
check_url/kr/54546?article_type=t

Play Video

Cite This Article
Tram, K., Manochehry, S., Feng, Q., Chang, D., Salena, B. J., Li, Y. Colorimetric Detection of Bacteria Using Litmus Test. J. Vis. Exp. (115), e54546, doi:10.3791/54546 (2016).

View Video