Summary

Beyaz Fabrikasyon Exciplexes gelen Kararlı Emisyon ile elektrokimyasal Hücreleri Işık yayan

Published: November 15, 2016
doi:

Summary

The authors present a method for fabricating stable white-light-emitting electrochemical cells utilizing emission from exciplexes formed between a blue-emitting fluorene polymer and aromatic amines.

Abstract

Yazarlar, (mavi floresan poli (9,9-di-n-dodecylfluorenyl-2,7-diil) oluşan bir aktif tabaka olan bir polimer ışık yayan elektrokimyasal hücreler arasında kararlı bir beyaz ışık emisyonu (PLECS) imal edilmesi için bir yaklaşım mevcut PFD), ve π-konjüge trifenilamin molekülleri. Bu beyaz ışık emisyonu elektronik olarak uyarılmış eyaletlerde PFD ve aminler arasında oluşan exciplexes kaynaklanır. ', 4' 'PFD, 4,4 ihtiva eden bir cihaz – tris [2-naftil (fenil) amino] trifenilamin (2-TNATA), poli (etilen oksit) ve K 2 CF3 SO3 Uluslararası Komisyonu beyaz ışık yayılması gösterdi; de l'éclairage (CIE) (0.33, 0.43) koordinatlarını ve Renk Dönüşüm İndeksi (CRI) 3.5 V. Sabit voltaj ölçümleri uygulamalı bir gerilimde Ra = 73 CIE (0.27, 0.37), Ra koordinatları gösterdi 67 ve 5 V gerilim uygulanmasından hemen sonra görülen bir emisyon rengi hemen değişmeden ve sonra kararlı edildi300 san.

Introduction

Research and development of polymer light-emitting electrochemical cells (PLECs) have expanded in recent years.1-15 PLECs are similar to organic light-emitting diodes (OLEDs) in that both are surface emitting organic devices and are expected to find their way into future lighting applications. OLEDs are already on the market, but the cost is still high, one reason being that OLEDs need a complicated device structure with multiple layers. In contrast, PLECs have a very simple device structure which consists of a single active layer (emitting layer) between a pair of electrodes. This means that PLECs are suited to mass production processes such as roll-to-roll printing and coating.

A PLEC has an active layer consisting of a fluorescent π-conjugated polymer (FCP). The FCP can be electrochemically doped with a polymer electrolyte (a mixture of an ion conducting polymer and a salt). The FCP is p-doped on the anode side and n-doped on the cathode side during operation, and generates excitons which emit light between the p- and n-doped regions. Therefore, the emission color reflects the exciton emission (=fluorescence) wavelength of the FCP.

Stable white light emission is important for lighting applications, and color mixing techniques which employ two or more emitters have been widely used to achieve this.10-14 Recently, we presented a different approach for obtaining stable white light emission, using an active layer which contains blue-fluorescent poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) and π-conjugated aromatic amines15. This white light emission comes from exciplexes formed between PFD and amine molecules in excited states. Exciplex emission has a broader spectrum compared to the exciton emission from the PDF and/or amines, which gives it a color close to that of natural light. This translates to a higher color rendering index (CRI), which is preferable for lighting applications.

In this article, the authors describe the procedure used to fabricate the exciplex based LECs and show the stability of their white light emission.

Protocol

Aktif Katman Çözümleri hazırlanması 1. Amin katkılı PFD cihazlar için etkin katman çözümü Not: PFD, 4,4 ', 4' '- tris [2-naftil (fenil) amino] trifenilamin (2-TNATA), 9,9-dimetil-N, N'-di (1-naftil) – N alınan, N 'difenil-9H-floren-2,7-diamin (DMFL-NPB), poli (etilen oksit) (PEO), kullanılmıştır. Potasyum triflorometansülfonat (K 2 CF3 SO3) kullanımdan önce 1 saat boyunca 200 ° C'de vakum al…

Representative Results

Elektro (EL) spektrumlan CIE koordinatları ve CRI değerleri (Şekil 2, 4, 5) hesaplamak için kullanılmıştır. Yayan cihazlar görselleri emisyon (Şekil 3) beyazlık doğrulamak için toplanmıştır. Amin katkılı PFD cihazları ve katkısız PFD cihazın EL spektrumu aşağıda Şekil 2'de gösterilmektedir. Katkısız PFD cihazı PFD exciton emisyona karşılık …

Discussion

LEC hidrofobik PFD ve aromatik aminler ve hidrofilik polietilen oksit ve KCF 3 SO3 içeren aktif bir tabakası vardır. Bu malzemeler çok farklı çözünürlüklere sahip olduğundan, döndürerek kaplama çözeltisinin dikkatli bir hazırlık eksik çözülme önlemek için önemlidir. Her bir birinci muntazam bir karışım oluşturmak üzere daha sonra çözeltiler, birlikte karıştırılır ve yeterli solvatlayıcı yeteneği ile çözücü maddeler içinde, ayrı ayrı ve tamamen yok edilme…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Bu çalışma kısmen Bilimsel Araştırma Hibe-in-Aid (No 24225003) tarafından desteklenmiştir. Bu çalışma JX Nippon Oil & Energy Corporation tarafından mali destek verdi.

Materials

Poly(9,9-di-n-dodecylfluorenyl-2,7-diyl) (PFD) Aldrich 571660
4,4’,4’’-Tris[2-naphthyl(phenyl)amino]triphenylamine (2-TNATA) Aldrich 768669
9,9-Dimethyl-N,N’-di(1-naphthyl)-N,N’-diphenyl-9H-fluorene-2,7-diamine (DMFL-NPB) Aldrich
Poly(ethylene oxide) (PEO) Aldrich 182028
Potassium tirifluoromethansulfonate (KCF3SO3) Aldrich 422843 dried under vacuum at 200 °C for 2 hr prior to use
Chloroform Kanto Chemical Co. 08097-25 dehydrated
Cyclohexanone Kanto Chemical Co. 07555-00
SCAT 20-X (detergent) Daiichi Kogyo Seiyaku diluted with water
Acetone Kanto Chemical Co. 01866-25 Electronic grage
2-propanol Kanto Chemical Co. 32439-75 Electronic grage
13mm GD/X Disposable Filter Device PVDF Filter Media, Polypropylene Housing Whatman 6872-1304
UV/O3 Treating Unit SEN Lights Co.  SSP16-110
Spectral Photo Detector Otsuka Electronics MCPD 9800
Voltage Current Source Monitor  ADCMT 6241A 
Evaporation Mask  Tokyo Process Service Co., Ltd. NA The evaporation mask was wet-etched to create openings for patterned deposition of aluminum. The size of the mask is 100 mm x 100 mm x 0.2 mm-thick.

References

  1. Pei, Q., Yu, G., Zhang, C., Yang, Y., Heeger, A. J. Polymer light-emitting electrochemical cells. Science. 269 (5227), 1086-1088 (1995).
  2. Sun, Q., Li, Y., Pei, Q. Polymer light-emitting electrochemical cells for high-efficiency low-voltage electroluminescent devices. J. Disp. Technol. 3 (2), 211-224 (2007).
  3. Meier, S. B., et al. Light-emitting electrochemical cells: recent progress and future prospects. Mater. Today. 17 (5), 217-223 (2014).
  4. Edman, L., et al. Single-component light-emitting electrochemical cell fabricated from cationic polyfluorene: Effect of film morphology on device performance. J. Appl. Phys. 98 (4), 044502 (2005).
  5. Fang, J., Matyba, P., Edman, L. The Design and Realization of Flexible, Long-Lived Light-Emitting Electrochemical Cells. Adv. Funct. Mater. 19 (16), 2671-2676 (2009).
  6. Yu, Z., et al. Stabilizing the Dynamic p− i− n Junction in Polymer Light-Emitting Electrochemical Cells. J. Phys. Chem. Lett. 2 (5), 367-372 (2011).
  7. Sandström, A., Dam, H. F., Krebs, F. C., Edman, L. Ambient fabrication of flexible and large-area organic light-emitting devices using slot-die coating. Nat. Commun. 3, 1002 (2012).
  8. Liang, J., Li, L., Niu, X., Yu, Z., Pei, Q. Elastomeric polymer light-emitting devices and displays. Nat. Photonics. 7 (10), 817-824 (2013).
  9. Yang, Y., Pei, Q. Efficient blue-green and white light-emitting electrochemical cells based on poly 9, 9-bis (3, 6-dioxaheptyl)-fluorene-2, 7-diyl. J. Appl. Phys. 81 (7), 3294-3298 (1997).
  10. Tang, S., Buchholz, H. A., Edman, L. White Light from a Light-Emitting Electrochemical Cell: Controlling the Energy-Transfer in a Conjugated Polymer/Triplet-Emitter Blend. ACS Appl. Mater. Iterfaces. 7 (46), 25955-25960 (2015).
  11. Nishikitani, Y., Takizawa, D., Nishide, H., Uchida, S., Nishimura, S. White Polymer Light-Emitting Electrochemical Cells Fabricated Using Energy Donor and Acceptor Fluorescent π-Conjugated Polymers Based on Concepts of Band-Structure Engineering. J. Phys. Chem. C. 119 (52), 28701-28710 (2015).
  12. Sun, M., Zhong, C., Li, F., Cao, Y., Pei, Q. A Fluorene− Oxadiazole Copolymer for White Light-Emitting Electrochemical Cells. Macromolecules. 43 (4), 1714-1718 (2010).
  13. Tang, S., Pan, J., Buchholz, H., Edman, L. White Light-Emitting Electrochemical Cell. ACS Appl. Mater. Interfaces. 3 (9), 3384-3388 (2011).
  14. Tang, S., Pan, J., Buchholz, H. A., Edman, L. White light from a single-emitter light-emitting electrochemical cell. J. Am. Chem. Soc. 135 (9), 3647-3652 (2013).
  15. Nishikitani, Y., et al. White polymer light-emitting electrochemical cells using emission from exciplexes with long intermolecular distances formed between polyfluorene and π-conjugated amine molecules. J. Appl. Phys. 118 (22), 225501 (2015).
  16. Tang, S., Mindemark, J., Araujo, C. M. G., Brandell, D., Edman, L. Identifying Key Properties of Electrolytes for Light-Emitting Electrochemical Cells. Chem. Mater. 26 (17), 5083-5088 (2014).
check_url/kr/54628?article_type=t

Play Video

Cite This Article
Uchida, S., Takizawa, D., Ikeda, S., Takeuchi, H., Nishimura, S., Nishide, H., Nishikitani, Y. Fabrication of White Light-emitting Electrochemical Cells with Stable Emission from Exciplexes. J. Vis. Exp. (117), e54628, doi:10.3791/54628 (2016).

View Video