Summary

燃烧特性参数和模型燃料开发的微型管状火焰辅助燃料电池

Published: October 02, 2016
doi:

Summary

A protocol for creating a model fuel-rich combustion exhaust is developed through combustion characterization and is applied for micro-tubular flame-assisted fuel cell testing and research.

Abstract

Combustion based power generation has been accomplished for many years through a number of heat engine systems. Recently, a move towards small scale power generation and micro combustion as well as development in fuel cell research has created new means of power generation that combine solid oxide fuel cells with open flames and combustion exhaust. Instead of relying upon the heat of combustion, these solid oxide fuel cell systems rely on reforming of the fuel via combustion to generate syngas for electrochemical power generation. Procedures were developed to assess the combustion by-products under a wide range of conditions. While theoretical and computational procedures have been developed for assessing fuel-rich combustion exhaust in these applications, experimental techniques have also emerged. The experimental procedures often rely upon a gas chromatograph or mass spectrometer analysis of the flame and exhaust to assess the combustion process as a fuel reformer and means of heat generation. The experimental techniques developed in these areas have been applied anew for the development of the micro-tubular flame-assisted fuel cell. The protocol discussed in this work builds on past techniques to specify a procedure for characterizing fuel-rich combustion exhaust and developing a model fuel-rich combustion exhaust for use in flame-assisted fuel cell testing. The development of the procedure and its applications and limitations are discussed.

Introduction

固体氧化物燃料电池(SOFC)的革新已报道在近年来随着技术的不断发展。在众多的优势,固体氧化物燃料电池已经成为众所周知的高燃油效率,低排放和燃油适中灵活性相对于其他基于燃发电技术1。此外,固体氧化物燃料电池是可伸缩的,可用于高燃油效率,即使在小尺度。不幸的是,在当前的氢基础设施的限制已经创建需要一种通常低效的燃料重整系统。最近的发展是微型管状火焰辅助燃料电池(MT-FFC)在笔者的前期工作2的报道。所述MT-FFC是建立在原有的火焰直接型燃料电池(DFFC),其提供热量和燃料通过燃烧3重整的好处的火焰辅助燃料电池(FFC)的第一个例子。该DFFC设置放在与火焰直接接触到开放环境ENVIR一个SOFConment。火焰的部分氧化较重烃类燃料来创建 H 2和CO,它可以直接用较少潜在相比纯甲烷或其它较重的烃可以使用在固体氧化物燃料电池为碳焦化。另外,该火焰提供以使固体氧化物燃料电池,以它的工作温度所需要的热能。原来的DFFC最近发生的变化通过移动SOFC出火焰区和窜燃烧废气的SOFC创建FFC 2。不像DFFC,燃烧发生在一个部分封闭的腔室(而不是环境温度),以便可以控制燃料与空气的比值和排气,可直接供给到燃料电池不完全燃烧的发生。 FFCS具有其他优势,包括高燃料利用率和电机效率高相比DFFCs 2。

作为一个新兴的研究领域,需要的实验技术,可以评估MT-FF的潜力CS为未来的发电应用。这些技术需要部分氧化,或富燃料燃烧,并已被鉴定为产生 H 2和CO,也被称为合成气的一种方式的排气分析,用CO 2和H 2 O沿合成气可以直接在燃料电池发电中使用。富燃料燃烧废气的分析已经很好地建立在近年来已进行了理论上4,计算5,6-和实验7用于许多不同的目的。许多理论和计算研究都依赖于化学平衡分析(CEA),以评估燃烧产物品种是积极有利的,和化学动力学模型反应机理。虽然这些方法非常有用,许多新兴技术都在实验技术的研究和开发过程中依赖。实验技术通常依赖于ANA利用燃烧废气的裂解任一气体色谱仪(GC)7或质谱仪(MS)8。无论在GC线/注射器或MS探针插入燃烧废气和测量以评估物种的浓度。实验技术的应用在小规模发电的区域已经屡见不鲜。一些实例包括已开发了单室固体氧化物燃料电池7,9和DFFCs 10-15操作微燃烧器。在宽范围的操作条件,包括不同的温度,流速和当量比发生燃烧废气的分析。

在DFFC研究,燃料和氧化剂的区域可以是部分预混合或非预混,与燃烧器开放以保证完全燃烧的环境。与需要分析火焰组合物中,MS已经在许多情况下用于DFFC研究和燃烧分析16。的FFC的最近发展通过在部分封闭的环境依靠预混合燃烧与燃烧器,以防止燃料的完全氧化而不同。其结果是,需要在从漏气自由受控环境燃烧废气的分析。为此目的开发的实验技术依赖于用于微燃烧室研究与在不同当量比的燃烧排气的GC分析较早的技术。 GC分析导致燃烧废气组合物的表征( ,每个排气组分包括二氧化碳的体积%,H 2 O,N 2 )该分析允许根据由测得的比率分离气体的混合GC创造未来FFC研究的典范富燃料燃烧废气。

分析富燃料燃烧废气,发展模式富燃料燃烧废气和应用协议ING的SOFC测试排气建立在本文中。共同的挑战和限制对这些技术进行讨论。

Protocol

1.燃烧计算分析选择的燃料。在这里,选择甲烷作为基准燃料,但原则是转移到其他烃类燃料。 与1摩尔甲烷作为燃料,平衡公式(1)为化学计量燃烧来获得等式(2)。 通过空气的质量除以甲烷的质量计算化学计算如等式3为甲烷燃烧的燃料-空气比(F / A 化学?…

Representative Results

燃烧特性室应当在期望当量比为空气的逆流进入测试期间的腔室或其他空气泄漏测试之前进行检查。在开室燃烧过程被称为是几乎同量异序。其结果是,燃烧室内的压力可能不足以确保无来自外部环境的空气是回流入从室排气口或其它渗漏点燃烧室。有几个实验技术,以确认没有逆流发生。首先,对于一个非催化燃烧器,富-可燃性限值是公建立了许多燃料18,19。?…

Discussion

这里讨论的协议是以往的燃烧特性的研究和燃料电池测试之间的重要桥梁。燃料重整和燃料电池测试使用燃烧的已DFFC设置10-15已应用数年。然而,在DFFCs燃烧过程的表征主要涉及原位火焰组合物16的特性,并使用MS 8。作为DFFC是开放的环境中,排气组合物由主要是水和CO 2,而不是所需要的排气的表征。为了开发最近FFC概念的过程用于在部分封闭的腔室表征燃?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work is supported by an agreement with Syracuse University awarded by the Syracuse Center of Excellence in Energy and Environmental Systems with funding under prime award number DE-EE0006031 from the US Department of Energy and matching funding under award number 53367 from the New York State Energy Research and Development Authority (NYSERDA), contract 61736 from NYSERDA, and an award from Empire State Development’s Division of Science, Technology and Innovation (NYSTAR) through the Syracuse Center of Excellence, under award number #C120183. This work is supported by the National Science Foundation Graduate Research Fellowship Program under Grant No. 1247399.

Materials

Gas chromotograph SRI Instruments, Inc. SRI 8610C
K type thermocouples Omega KQXL-116G-6 Custom length
K type thermocouple extension wire Omega EXTT-K-20-SLE-100
Mass flow controller Omega FMA5427 0-40 L/min (N2)
Used for methane
Mass flow controller Omega FMA5443 0-200 L/min (N2)
Used for air
Mass flow controller Omega FMA5402A 0-10 mL/min (N2)
Used for CO
Mass flow controller Brooks Instrument SLA5850 200 SCCM (Propane)
Used for CO2
Mass flow controller Brooks Instrument SLA5850 5 L/min (Air)
Used for N2
Mass flow controller Brooks Instrument SLA5850 500 SCCM (N2)
Used for H2
Regulator Harris Products Group HP721-125-350-F Methane tank
Regulator Harris Products Group HP702-050-590-E Air tank
Regulator Airgas Y11-SR145B CO tank
Regulator Harris Products Group HP702-050-320-E CO2 tank
Regulator Airgas Y12-215B N2 tank
Regulator Harris Products Group HP702-015-350-D H2 tank
Methane, Compressed ,
Ultra high purity
Airgas UN1971 Extremely Flammable
Air, Compressed,
Ultra pure
Airgas UN1002 Not classified as hazardous to health.
CO, Compressed,
Ultra high purity
Airgas UN1016 Toxic by inhalation, Extremely flammable
CO2, Compressed,
Research grade
Airgas UN1013 Asphyxiant in high
concentrations
 N2, Compressed,
Ultra high purity
Airgas UN1066 Not classified as hazardous to health.
H2, Compressed,
Ultra high purity
Airgas UN1049 Extremely flammable,
burns with invisible flame
Source meter Tektronix, Inc. Keithley 2420 Connects to computer
via USB
Horizontal split tube furnace MTI Corportation OTF-1200X
Data acquisition National Instruments NI cDAQ-9172 Connects to computer
via USB
Thermocouple input National Instruments NI 9211 Connects to cDAQ-9172
Computer control for Mass Flow Controllers National Instruments NI 9263 Connects to cDAQ-9172
Computer control for Mass Flow Controllers
Testing software National Instruments LabVIEW 8.6
Ceramabond Aremco 552-VFG 1 Pint

References

  1. Gorte, R. J. Recent developments towards commercialization of solid oxide fuel cells. AIChE J. 51 (9), 2377-2381 (2005).
  2. Milcarek, R. J., Wang, K., Falkenstein-Smith, R. L., Ahn, J. Micro-tubular flame-assisted fuel cells for micro-combined heat and power systems. J. Power Sources. 306, 148-151 (2016).
  3. Horiuchi, M., Suganuma, S., Watanabe, M. Electrochemical power generation directly from combustion flame of gases, liquids, and solids. J. Electrochem. Soc. 151 (9), A1402-A1405 (2004).
  4. Starik, A. M., Kuleshov, P. S., Loukhovitski, B. I., Titova, N. S. Theoretical study of partial oxidation of methane by non-equilibrium oxygen plasma to produce hydrogen rich syngas. Int. J. Hydrogen Energy. 40 (32), 9872-9884 (2015).
  5. Katta, V. R., et al. On flames established with jet in cross flow of fuel-rich combustion. Fuel. 150, 360-369 (2015).
  6. Maruta, K., et al. Extinction limits of catalytic combustion in microchannels. P. Combustion Institute. 29 (1), 957-963 (2002).
  7. Ahn, J., Eastwood, C., Sitzki, L., Ronney, P. D. Gas-phase and catalytic combustion in heat-recirculating burners. P. Combustion Institute. 30 (2), 2463-2472 (2005).
  8. Kӧhler, M., Oßwald, P., Xu, H., Kathrotia, T., Hasse, C. Speciation data for fuel-rich methane oxy-combustion and reforming under prototypical partial oxidation conditions. Chemical Engineering Science. 139, 249-260 (2016).
  9. Ahn, J., Ronney, P. D., Shao, Z., Haile, S. M. A thermally self-sustaining miniature solid oxide fuel cell. J. Fuel Cell Science and Technology. 6 (4), 041004 (2009).
  10. Wang, K., Milcarek, R. J., Zeng, P., Ahn, J. Flame-assisted fuel cells running methane. Int. J. Hydrogen Energy. 40 (13), 4659-4665 (2015).
  11. Wang, K., Zeng, P., Ahn, J. High performance direct flame fuel cell using a propane flame. P. Combust. Inst. 32 (2), 3431-3437 (2011).
  12. Wang, Y. Q., Shi, Y. X., Yu, X. K., Cai, N. S., Li, S. Q. Integration of solid oxide fuel cells with multi-element diffusion flame burners. J. Electochem. Soc. 160 (11), F1241-F1244 (2013).
  13. Horiuchi, M., et al. Performance of a solid oxide fuel cell couple operated via in situ catalytic partial oxidation of n-butane. J. Power Sources. 189 (2), 950-957 (2009).
  14. Wang, Y., et al. The study of portable direct-flame solid oxide fuel cell (DF-SOFC) stack with butane fuel. J. Fuel Chem. Technol. 42 (9), 1135-1139 (2014).
  15. Wang, K., et al. A high-performance no-chamber fuel cell operated on ethanol flame. J. Power Sources. 177 (1), 33-39 (2008).
  16. Sun, L., Hao, Y., Zhang, C., Ran, R., Shao, Z. Coking-free direct-methanol-flame fuel cell with traditional nickel-cermet anode. Int. J. Hydrogen Energy. 35 (15), 7971-7981 (2010).
  17. Zeng, P., Wang, K., Falkenstein-Smith, R. L., Ahn, J. Effects of sintering temperature on the performance of SrSc0.1Co0.9O3-δ oxygen semipermeable membrane. Braz. J. Chem. Eng. 32 (3), 757-765 (2015).
  18. Turns, S. R. . An Introduction to Combustion: Concepts and Applications. , (2000).
  19. Glassman, I., Yetter, R. A., Glumac, N. G. . Combustion. , (2015).
check_url/kr/54638?article_type=t

Play Video

Cite This Article
Milcarek, R. J., Garrett, M. J., Baskaran, A., Ahn, J. Combustion Characterization and Model Fuel Development for Micro-tubular Flame-assisted Fuel Cells. J. Vis. Exp. (116), e54638, doi:10.3791/54638 (2016).

View Video