Summary

Administração sustentada dos mitógenos de células β para intactas mouse Ilhotas<em> Ex Vivo</em> Usando biodegradável poli (ácido láctico-co-glicólico) Microesferas

Published: November 05, 2016
doi:

Summary

Here, we present methodology to generate and administer compound of interest-loaded poly(lactic-co-glycolic acid) (PLGA) microspheres to intact mouse islets in culture with subsequent immunofluorescence analysis of β-cell proliferation. This method is suitable for determining the efficacy of candidate β-cell mitogens.

Abstract

O desenvolvimento de biomateriais aumentou significativamente o potencial para a entrega de drogas alvo para uma variedade de tipos de células e de tecidos, incluindo as células beta pancreáticas. Além disso, biomateriais partículas, hidrogéis, e andaimes também oferecem uma oportunidade única para administrar sustentada, a entrega de drogas controlável a p-células em cultura e em modelos de tecidos transplantados. Estas tecnologias permitem o estudo de fatores de proliferação de células β candidato usando ilhotas intactas e um sistema de translação relevante. Além disso, determinar a eficácia ea viabilidade de fatores candidatos para estimular a proliferação de células β em um sistema de cultura é fundamental antes de avançar para modelos in vivo. Aqui, nós descrevemos um método para co-cultura ilhotas intactas rato com o composto biodegradável de interesse (COI) poli -loaded (ácido láctico-co-glicólico) (PLGA) com a finalidade de avaliar os efeitos das sustentada in situ release of factores mitogénicos sobre a proliferação de células β. Esta técnica descreve em detalhe como gerar microesferas de PLGA contendo uma carga desejado, utilizando reagentes disponíveis comercialmente. Embora a técnica descrita utiliza factor de crescimento humano recombinante conjuntivo tecido (rhCTGF) como um exemplo, pode ser prontamente utilizada uma ampla variedade de COI. Além disso, este método utiliza placas de 96 poços para minimizar a quantidade de reagentes necessários para avaliar a proliferação de células β. Este protocolo pode ser facilmente adaptado para utilizar biomateriais alternativos e outras características da célula endócrina, tais como a sobrevivência de células e estado de diferenciação.

Introduction

células beta pancreáticas são as únicas células produtoras de insulina no corpo e são essenciais para manter a homeostase da glicose do sangue. Quando os indivíduos saudáveis possuem massa suficiente de células β e funcionar para regular adequadamente a glicose no sangue, indivíduos com diabetes são caracterizados pela insuficiente massa de células β e / ou função de 1,2. Foi proposto que a indução da proliferação de células β em última instância pode aumentar a massa de células β e restaurar a homeostase de glucose em indivíduos com diabetes 3. No entanto, é necessária a avaliação e validação de potenciais compostos de proliferação de células β em ilhotas intactas antes de terapias eficazes podem ser desenvolvidas. O transplante de ilhotas humanas de cadáveres em indivíduos com diabetes restaura a homeostase da glicose no sangue durante algum tempo, mas a disponibilidade e sucesso deste procedimento experimental é dificultada pela escassez de ilhotas humanos disponíveis para transplante e pela morte das células beta nas ilhotas rétransplante er 4. Mesmo com a descoberta de factores que induzem a multiplicação das células produtoras de insulina, um grande desafio ainda existe no fornecimento destes factores a locais relevantes in vivo. Uma estratégia para a entrega local sustentada de compostos proliferativas de células β é ácido poli (láctico-co-glicólico) (PLGA). PLGA tem uma história de uso na FDA aprovou produtos de entrega de drogas devido à sua alta segurança, biodegradabilidade, e cinética de libertação prolongada 5. Especificamente, é um copolímero de PLGA de lactido e glicolido que degrada por meio de hidrólise com água in vivo ou em cultura em ácido láctico e ácido glicólico, que são metabolitos que ocorrem naturalmente no corpo. O composto de fármaco encapsulado possa ser libertado no ambiente circundante por ambos difusão e / ou mecanismos de libertação controlada por degradação. A encapsulação de COI proporciona protecção contra a degradação enzimática, melhorar a biodisponibilidade do reagente em relação ao unencapsulated COI 5. Sugerimos que as microesferas de PLGA podem ser usadas para administrar compostos candidatos para ilhotas intactas em cultura, e, finalmente, in vivo. Testar a eficácia de PLGA para administrar agentes mitogénicos de células β para ilhotas ex vivo é crítico antes de protocolos de transplante são exploradas.

Actualmente, não existe uma técnica para medir a proliferação de células β em animais vivos. Experimentos para avaliar a eficácia de compostos potenciais de proliferação in vivo, portanto, requerem administração destes compostos a animais vivos, com dissecção posterior e processamento de pancreata para imunomarcação. Tais protocolos são caros e laborioso, e requer o composto a ser administrada sistemicamente, sem qualquer garantia de que eles vão atingir as ilhotas. Por outro lado, várias linhas de células imortalizadas β estão disponíveis para o estudo de células produtoras de insulina em cultura, mas estas linhas de células têm a arquitectura dos ilhéus e ENVIRONMENt encontrada em organismos vivendo 6. Linhas de células imortalizadas β são também caracterizados como tendo um grau muito mais elevado de replicação de células beta endógeno in vivo, complicando, assim, a análise dos compostos que induzem a proliferação. Neste estudo, descrevemos um protocolo que utiliza ilhotas intactas isoladas a partir de ratinhos adultos. Ao contrário de linhas de células-β, ilhotas intactas reter arquitetura normal das ilhotas. Do mesmo modo, em contraste com experiências realizadas in vivo, a administração de compostos proliferativas directamente para ilhotas intactas em cultura reduz significativamente a quantidade de reagentes que é necessário para medir com precisão a proliferação de células β.

O estudo actual utiliza PLGA para administrar um COI, neste exemplo, crescimento de tecido conectivo do Factor humano recombinante (rhCTGF). O método aqui descrito confere uma vantagem significativa sobre a administração do composto em bruto de ilhotas de cultura, uma vez que permite uma libertação contínua do composto em the meios de comunicação. Notavelmente, este ensaio pode ser modificado para administrar uma ampla variedade de proteínas e anticorpos de interesse para ilhotas intactas. Efeitos sobre outros tipos de células endócrinas, incluindo células-ct, também podem ser analisados.

Protocol

Todos os procedimentos foram aprovados e executados em conformidade com o Comité de Cuidados e Uso do Vanderbilt Institucional Animal. 1. Rotulagem COI com Fluoróforo (Opcional) Escolha um corante fluorescente que irá reagir com uma amina primária livre (por exemplo, numa proteína), tal como ésteres de succinimidilo ou derivados de fluoresceína, para visualizar microesfera de carga. Dissolve-se um excesso molar de 8X (em relação a moles de COI) de fluoróforo em …

Representative Results

A Figura 1 é uma representação visual das microesferas geradas utilizando o protocolo anterior. O protocolo aqui descrito proporciona microesferas rhCTGF-carregada de vários tamanhos. A maior fracção de microsferas vai situar-se entre 1 e 10 um de diâmetro, embora algumas microsferas que podem ser maiores (Figura 2). Se desejado, o tamanho de microsferas pode ser ajustada e optimizada com base em parâmetros de fabrico, tais como …

Discussion

O estudo da proliferação de células β em cultura é normalmente prejudicada por várias dificuldades. Em primeiro lugar, as linhas de células imortalizadas β são caracterizados por níveis mais elevados de proliferação do que o que é encontrado em células beta em ilhéus endógenos vivo. Além disso, estas linhas de células imortalizadas não têm a arquitetura normal crítico para a função das células β normal. Estes dois factos fazem com que seja difícil para determinar se os resultados obtidos utiliz…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors would like to thank Bethany Carboneau (Vanderbilt University) for critical reading of this manuscript. We also thank Anastasia Coldren (Vanderbilt University Medical Center Islet Procurement and Analysis Core) for islet isolations, and Dr. Alvin C. Powers (Vanderbilt University Medical Center) and Dr. David Jacobson (Vanderbilt University) for use of their centrifuge and tissue culture facility. This research involved use of the Islet Procurement and Analysis Core of the Vanderbilt Diabetes Research and Training Center supported by NIH grant DK20593. This work was supported by an American Heart Association Postdoctoral Fellowship (14POST20380262) to R.C.P., and grants from the Juvenile Diabetes Research Foundation (1-2011-592), and Department of Veterans Affairs (1BX00090-01A1) to M.A.G.

Materials

Oregon Green 488 Carboxylic Acid, Succinimidyl Ester, 6-isomer ThermoFisher Scientific O6149 For labeling COI with fluorophore
DMSO Dimethyl Sulfoxide Fisher BioReagents BP231-1 For dissolving fluorophore in step 1
Disposable PD-10 Desalting Columns GE Healthcare 17-0851-01 Desalting column used in step 1
Resomer RG 505, Poly(D,L-lactide-co-glycolide), ester terminated, molecular weight 54,000-69,000 Sigma-Aldrich 739960 Used in generation of microspheres in step 2
Poly(vinyl alcohol) molecular weight 89,000-98,000 Sigma-Aldrich 341584 Used in generation of microspheres in step 2
RPMI 1640 Thermo Scientific 11879-020 For culturing islets
Dextrose Anhydrous Fisher BioReagents 200-075-1 Supplement for islet media
Penicillin-Streptomycin Sigma-Aldrich P4333 Antibiotics for islet media
Normal horse serum Jackson ImmunoResearch 008-000-121 Supplement for islet media
96-well tissue culture plate Corning 3603 For culturing islets
Ethylene glyco-bis(2-aminoethylether)-N,N,N',N'-tetraacetic acid Sigma-Aldrich E4378 Supplement for pre-assay islet media
Cytospin 4 Cytocentrifuge Thermo Scientific A78300003 For spinning cells onto microscope slides
EZ Single Cytofunnel Thermo Scientific A78710020 For spinning cells onto microscope slides
Ethylenediaminetetraacetic acid Fisher BioReagents BP118-500 Used in dissociating islets
paraformaldehyde Sigma-Aldrich P6148 For fixing cells
Triton  X-100 Fisher BioReagents BP151 For permeabilizing cells
Normal donkey serum Jackson ImmunoResearch 017-000-121 Blocking reagents for immunofluorescence
Anti-Ki67 antibody abcam ab15580 For Ki67 immunofluorescence
Polyclonal Guinea Pig Anti-Insulin Dako A0564 For insulin immunofluorescence
Cy3 AffiniPure Donkey Anti-Rabbit Jackson ImmunoResearch 711-165-152 For Ki67 immunofluorescence
Cy5 AffiniPure Donkey Anti-Guinea Pig Jackson ImmunoResearch 706-175-148 For insulin immunofluorescence
DAPI (4',6-Diamidino-2-Phenylindole, Dihydrochloride) ThermoFisher Scientific D1306 For nuclei visualization in immunofluorescence
Aqua-Mount Lerner Laboratories 13800 Fast drying mounting media
FreeZone -105°C 4.5 Liter Cascade Benchtop Freeze Dry System Labconco 7382020 For lyophilization of microspheres

References

  1. Butler, A. E., et al. Beta-cell deficit and increased beta-cell apoptosis in humans with type 2 diabetes. Diabetes. 52 (1), 102-110 (2003).
  2. Levy, J., Atkinson, A. B., Bell, P. M., McCance, D. R., Hadden, D. R. Beta-cell deterioration determines the onset and rate of progression of secondary dietary failure in type 2 diabetes mellitus: the 10-year follow-up of the Belfast Diet Study. Diabet Med. 15 (4), 290-296 (1998).
  3. Bouwens, L., Rooman, I. Regulation of pancreatic beta-cell mass. Physiol Rev. 85 (4), 1255-1270 (2005).
  4. McCall, M., Shapiro, A. M. Update on islet transplantation. Cold Spring Harb Perspect Med. 2 (7), 007823 (2012).
  5. Danhier, F., et al. PLGA-based nanoparticles: an overview of biomedical applications. J Control Release. 161 (2), 505-522 (2012).
  6. Skelin, M., Rupnik, M., Cencic, A. Pancreatic beta cell lines and their applications in diabetes mellitus research. ALTEX. 27 (2), 105-113 (2010).
  7. Rui, J., et al. Controlled release of vascular endothelial growth factor using poly-lactic-co-glycolic acid microspheres: in vitro characterization and application in polycaprolactone fumarate nerve conduits. Acta Biomater. 8 (2), 511-518 (2012).
  8. Lacy, P. E., Kostianovsky, M. Method for the isolation of intact islets of Langerhans from the rat pancreas. Diabetes. 16 (1), 35-39 (1967).
  9. Szot, G. L., Koudria, P., Bluestone, J. A. Murine pancreatic islet isolation. J Vis Exp. (7), e255 (2007).
  10. Mukherjee, B., Santra, K., Pattnaik, G., Ghosh, S. Preparation, characterization and in-vitro evaluation of sustained release protein-loaded nanoparticles based on biodegradable polymers. Int J Nanomedicine. 3 (4), 487-496 (2008).
  11. Riley, K. G., et al. Connective tissue growth factor modulates adult beta-cell maturity and proliferation to promote beta-cell regeneration in mice. Diabetes. 64 (4), 1284-1298 (2015).
  12. Mosser, R. E., Gannon, M. An assay for small scale screening of candidate beta cell proliferative factors using intact islets. Biotechniques. 55 (6), 310-312 (2013).
  13. Carvell, M. J., Marsh, P. J., Persaud, S. J., Jones, P. M. E-cadherin interactions regulate beta-cell proliferation in islet-like structures. Cell Physiol Biochem. 20 (5), 617-626 (2007).
  14. Wakae-Takada, N., Xuan, S., Watanabe, K., Meda, P., Leibel, R. L. Molecular basis for the regulation of islet beta cell mass in mice: the role of E-cadherin. Diabetologia. 56 (4), 856-866 (2013).
  15. Gavrieli, Y., Sherman, Y., Ben-Sasson, S. A. Identification of programmed cell death in situ via specific labeling of nuclear DNA fragmentation. J Cell Biol. 119 (3), 493-501 (1992).
  16. Kuo, L. J., Yang, L. X. Gamma-H2AX – a novel biomarker for DNA double-strand breaks. In Vivo. 22 (3), 305-309 (2008).
  17. Daoud, J., Rosenberg, L., Tabrizian, M. Pancreatic islet culture and preservation strategies: advances, challenges, and future outlook. Cell Transplant. 19 (12), 1523-1535 (2010).
  18. Carter, J. D., Dula, S. B., Corbin, K. L., Wu, R., Nunemaker, C. S. A practical guide to rodent islet isolation and assessment. Biol Proced Online. 11, 3-31 (2009).
  19. Xu, Q., He, C., Xiao, C., Chen, X. Reactive Oxygen Species (ROS) Responsive Polymers for Biomedical Applications. Macromol Biosci. 16 (5), 635-646 (2016).
  20. Makadia, H. K., Siegel, S. J. Poly Lactic-co-Glycolic Acid (PLGA) as Biodegradable Controlled Drug Delivery Carrier. Polymers (Basel). 3 (3), 1377-1397 (2011).
  21. Cui, F., Shi, K., Zhang, L., Tao, A., Kawashima, Y. Biodegradable nanoparticles loaded with insulin-phospholipid complex for oral delivery: preparation, in vitro characterization and in vivo evaluation. J Control Release. 114 (2), 242-250 (2006).
  22. Kavanaugh, T. E., Werfel, T. A., Cho, H., Hasty, K. A., Duvall, C. L. Particle-based technologies for osteoarthritis detection and therapy. Drug Deliv Transl Res. , (2015).
  23. Joshi, R. V., Nelson, C. E., Poole, K. M., Skala, M. C., Duvall, C. L. Dual pH- and temperature-responsive microparticles for protein delivery to ischemic tissues. Acta Biomater. 9 (5), 6526-6534 (2013).
  24. Poole, K. M., et al. ROS-responsive microspheres for on demand antioxidant therapy in a model of diabetic peripheral arterial disease. Biomaterials. 41, 166-175 (2015).

Play Video

Cite This Article
Pasek, R. C., Kavanaugh, T. E., Duvall, C. L., Gannon, M. A. Sustained Administration of β-cell Mitogens to Intact Mouse Islets Ex Vivo Using Biodegradable Poly(lactic-co-glycolic acid) Microspheres. J. Vis. Exp. (117), e54664, doi:10.3791/54664 (2016).

View Video