Summary

方法来研究中性粒细胞脂质的改变和中性粒细胞胞外陷阱随后形成

Published: March 29, 2017
doi:

Summary

脂质是已知在细胞功能中起重要作用。在这里,我们描述了一种方法,以确定嗜中性粒细胞的脂质组合物,重点对胆固醇水平,同时使用HPTLC和HPLC纯化,获得更好的理解嗜中性粒细胞的胞外圈闭形成的基本机制的。

Abstract

通过高效薄层层析(HPTLC)进行脂质分析是分析各种脂质的相对简单的,成本有效的方法。脂质( 例如,在宿主-病原体相互作用或主机条目)的功能已被报道在细胞过程中起关键作用。在这里,我们示出了方法来确定脂质组合物,具有相比于高效液相色谱法(HPLC)的聚焦初级血液衍生的中性粒细胞的胆固醇水平,通过HPTLC。的目的是调查脂质/胆固醇改变的嗜中性粒细胞的胞外陷阱(母语)的形成中的作用。 NET版本被称为宿主防御机制,以防止病原体的宿主内蔓延。因此,血液来源的人中性粒细胞用甲基β环糊精(MβCD)处理以诱导脂质改变的细胞。使用HPTLC和HPLC,我们已经表明,MβCD处理的细胞导致脂质与小区中的胆固醇含量降低显著相关联的改造。与此同时,MβCD治疗嗜中性粒细胞的导致母语的形成,如通过免疫荧光显微术。总之,在这里我们提出一个具体的方法来研究在嗜中性粒细胞脂质改变和渔网的形成。

Introduction

脂质已经被证明在细胞稳态,细胞死亡,宿主-病原体相互作用,和细胞因子释放1〜发挥重要作用。随着时间的推移,利息和知识脂质在宿主 – 病原体相互作用或炎症的影响有所增加,一些出版物确认某些脂质的核心作用,尤其是类固醇胆固醇在细胞反应。他汀类药物,其通过阻断3-羟基-3-甲基 – 辅酶-A还原酶用作胆固醇生物合成的抑制剂的药理学治疗(HMG辅酶A还原酶),可以通过降低白细胞介素的血清水平充当抗炎剂6和C反应蛋白2。胆固醇和鞘糖脂富集结构可以通过几种病原体,如细菌和病毒一起使用,作为一个网关到主机3,4,5,类= “外部参照”> 6。鞘脂( 例如,鞘磷脂)已经显示出由病原体被用来促进其致病性7。在巨噬细胞,分枝杆菌使用富含胆固醇的用于输入单元域;胆固醇的耗尽抑制分枝杆菌的摄取8。此外, 土拉弗朗西斯菌,负责兔热病人畜共患剂(也被称为兔热病)9,巨噬细胞的感染导致当胆固醇从膜10耗尽该被废除的感染。类似地,通过富含脂质的结构的宿主细胞大肠杆菌的侵袭被证明是胆固醇依赖性4。此外,上皮细胞的鼠伤寒沙门氏菌感染的实验表明,胆固醇是病原体进入细胞11是必不可少的。胆固醇消耗明显抑制ð沙门氏菌11的摄取。此外,最近的一项研究Gilk 。表明,胆固醇起着贝氏burnetti 12摄取了重要的作用。此外,TUONG 。发现,25-羟基胆固醇起着由脂多糖(LPS)在吞噬作用至关重要的作用刺激的巨噬细胞13。当巨噬细胞药理学上处理以消耗胆固醇14吞噬功能降低。因此,胆固醇和其他脂质似乎起到感染和炎症的重要作用,因为它们消耗可以从多种病原体10,11,12减少入侵的风险。

最近,我们能够证明脂质的改变,尤其是从细胞胆固醇消耗,诱导中性粒细胞产胞外的形成ř陷阱(母语)在人血液来源的嗜中性粒细胞15。由于网在2004年发现的,它们已被证明在细菌截留中发挥重要作用,从而阻碍在16感染,17的蔓延。母语由具有组蛋白,蛋白酶,和抗微生物肽16相关联的DNA主链的。的母语的嗜中性粒细胞的释放可通过入侵病原体18,19和化学物质如佛波醇肉豆蔻酸乙酸酯(PMA)或他汀类药物16,20进行诱导。然而,详细的细胞机制,尤其是在这个过程中脂类的作用,仍然是不完全清楚。脂质的分析可能会导致更好地了解参与多种细胞过程和相互作用,如教师的释放机制。 CholesteROL和鞘磷脂是细胞膜脂质微,在那里他们增加稳定性,并促进参与蛋白质运输和信号事件21蛋白的聚集的重要组成部分。调查某些脂质,两亲性的药理学试剂,如环状寡糖甲基β环糊精(MβCD)的机械作用,可用于改变细胞的脂质组成,并减少在体外 15胆固醇。这里,我们提出的方法使用HPTLC分析嗜中性粒细胞的脂质组合物响应于MβCD。采用高效液相色谱法确认胆固醇在嗜中性白细胞群体的水平。此外,我们描述可视化响应于MβCD教师的在人血液来源的嗜中性粒细胞免疫荧光显微镜的形成的方法。

Protocol

外周血中此协议的集合是经当地人类研究伦理委员会。所有的人类受试者提供书面知情同意书。 1.通过密度梯度离心分离人血液来源的中性粒细胞 人血源性中性粒细胞的分离 层〜20毫升的血液20上毫升附近的火焰和没有混合泛影钠/葡聚糖溶液。 离心机在470×g离心30分钟,不制动。 除去单核细胞和血浆淡黄色层。传送多形核细胞(PMN)?…

Representative Results

人血液来源的嗜中性粒细胞通过密度梯度离心( 图2)中分离。为了研究嗜中性粒细胞上的脂质改变的效果,将细胞用10mMMβCD,其从细胞耗尽胆固醇处理。随后,将脂质从通过Bligh和Dyer的( 图1,左图)的样品中分离,如通过Brogden 等人描述。 23。将制备的脂质样品加载到使用三溶液协议,它已被优化,以分离和可视…

Discussion

这里描述的方法可用于分析特定脂质,如胆固醇,通过HPTLC或HPLC,并调查药理脂质改变对教师的形成的影响(参见Neumann 15)。

HPTLC是分析大量样品的宽范围的脂质的相对成本有效且简单的方法。该方法已在许多研究领域,包括抗生素量化25,在溶酶体贮积症26脂质贮积,和胆固醇和cholesterylglucoside水平的上皮细胞<…

Disclosures

The authors have nothing to disclose.

Acknowledgements

由Akademie的献给Tiergesundheit(AFT)和博士课程,奖学金的奖学金“动物和人畜共患病,”兽医,德国汉诺威大学,提供给阿恩·纳曼的这项工作得到了支持。

Materials

Neutrophil isolation, NET staining and quantification
Alexa Flour 633 goat anti-rabbit IgG Invitrogen A-21070
Anti-MPOα antibody Dako A0398
BSA Sigma-Aldrich 3912-100G
Marienfeld-Neubauer improved counting chamber Celeromics MF-0640010
Confocal microscope TCS SP5 AOBS with tandem scanner Leica DMI6000CS
Dulbecco´s PBS 10X Sigma-Aldrich P5493-1L Dilute 1:10 in water for 1X working solution
Dy Light 488 conjugated highly cross-absorbed Thermo Fisher Scientific 35503
Excel Microsoft 2010
DNA/Histone 1 antibody Millipore MAB3864
Image J NIH 1.8 http://imagej.nih.gov/ij/
Light microscope VWR 630-1554
Methyl-β-cyclodextrin Sigma-Aldrich C4555-1G
PFA Carl Roth 0335.3 dissolve in water, heat up to 65 °C and add 1N NaOH to clear solution
PMA Sigma-Aldrich P8139-1MG Stock 16 µM, dissolved in 1X PBS
Poly-L-lysine Sigma-Aldrich P4707
Polymorphprep AXIS-SHIELD AN1114683
ProLong Gold antifade reagent with DAPI Invitrogen P7481
Quant-iT PicoGreen dsDNA Reagent Invitrogen P7581
RPMI1640 PAA E 15-848
HBSS with CaCl and Mg Sigma H6648
Triton X-100 Sigma-Aldrich T8787-50ml
Trypanblue Invitrogen 15250-061 0.4% solution
Water Carl Roth 3255.1 endotoxin-free
Name Company Catalog Number  Comments
Lipid isolation and analysis
1-propanol Sigma-Aldrich 33538
10 µl syringe Hamilton 701 NR 10 µl
Diethyl ether Sigma-Aldrich 346136
Ethyl acetate Carl Roth 7336.2
Canullla 26G Braun 4657683
Copper(II)sulphatepentahydrate Merck 1027805000
Chloroform Carl Roth 7331.1
CP ATLAS software Lazarsoftware 2.0
Chromolith HighResolution RP-18 endcapped 100-4.6 mm column Merck 152022
High Performance Liquid Chromatograph Chromaster Hitachi HITA 892-0080-30Y Paramaters are dependent on individual HPLC machine
HPLC UV Detector Hitachi 5410
HPLC Column Oven Hitachi 5310
HPLC Auto Sampler Hitachi 5260
HPLC Pump Hitachi 5160
Methanol Carl Roth 7342.1
n-Hexane Carl Roth 7339.1
Phosphoric acid Sigma-Aldrich 30417
Potassium chloride Merck 49,361,000
Potters LAT Garbsen 5 ml
SDS Carl Roth CN30.3
HPTLC silica gel 60 Merck 105553
Vacufuge plus basic device Eppendorf 22820001
Corning Costar cell culture 48-well plate, flat bottom Sigma CLS3548
Coverslip Thermo Fisher Scientific 1198882
Glass slide Carl Roth 1879
BD Tuberculin Syringe Only 1 ml BD Bioscience 309659

References

  1. Riethmuller, J., Riehle, A., Grassme, H., Gulbins, E. Membrane rafts in host-pathogen interactions. Biochim Biophys Acta. 1758 (12), 2139-2147 (2006).
  2. Shahbazian, H., Atrian, A., Yazdanpanah, L., Lashkarara, G. R., Zafar Mohtashami, A. Anti-inflammatory effect of simvastatin in hemodialysis patients. Jundishapur J Nat Pharm Prod. 10, e17962 (2015).
  3. Bavari, S., et al. Lipid raft microdomains: A gateway for compartmentalized trafficking of Ebola and Marburg viruses. J Exp Med. 195, 593-602 (2002).
  4. Zaas, D. W., Duncan, M., Rae Wright, ., J, S. N., Abraham, The role of lipid rafts in the pathogenesis of bacterial infections. Biochim Biophys Acta. 1746 (3), 305-313 (2005).
  5. Rohde, M., Muller, E., Chhatwal, G. S., Talay, S. R. Host cell caveolae act as an entry-port for group A streptococci. Cell Microbiol. 5 (5), 323-342 (2003).
  6. Grassme, H., et al. Host defense against Pseudomonas aeruginosa requires ceramide-rich membrane rafts. Nat Med. 9 (3), 322-330 (2003).
  7. Heung, L. J., Luberto, C., Del Poeta, M. Role of sphingolipids in microbial pathogenesis. Infect Immun. 74 (1), 28-39 (2006).
  8. Gatfield, J., Pieters, J. Essential role for cholesterol in entry of mycobacteria into macrophages. Science. 288 (5471), 1647-1650 (2000).
  9. Rapini, R. P., Bolognia, J. L., Jorizzo, J. L. . Dermatology 2-Volume Set. , (2007).
  10. Tamilselvam, B., Daefler, S. Francisella targets cholesterol-rich host cell membrane domains for entry into macrophages. J Immunol. 180 (12), 8262-8271 (2008).
  11. Garner, M. J., Hayward, R. D., Koronakis, V. The Salmonella pathogenicity island 1 secretion system directs cellular cholesterol redistribution during mammalian cell entry and intracellular trafficking. Cell Microbiol. 4 (3), 153-165 (2002).
  12. Gilk, S. D., et al. Bacterial colonization of host cells in the absence of cholesterol. PLoS Pathog. 9 (1), e1003107 (2013).
  13. Tuong, Z. K., et al. Disruption of Rorα1 and cholesterol 25-hydroxylase expression attenuates phagocytosis in male Roralphasg/sg mice. Endocrinology. 154 (1), 140-149 (2013).
  14. Bryan, A. M., Farnoud, A. M., Mor, V., Del Poeta, M. Macrophage cholesterol depletion and its effect on the phagocytosis of Cryptococcus neoformans. J Vis Exp. (94), (2014).
  15. Neumann, A., et al. Lipid alterations in human blood-derived neutrophils lead to formation of neutrophil extracellular traps. Eur J Cell Biol. 93 (8-9), 347-354 (2014).
  16. Brinkmann, V., et al. Neutrophil extracellular traps kill bacteria. Science. 303 (5663), 1532-1535 (2004).
  17. von Köckritz-Blickwede, M., Nizet, V. Innate immunity turned inside-out: antimicrobial defense by phagocyte extracellular traps. J Mol Med. 87 (8), 775-783 (2009).
  18. Fuchs, T. A., et al. Novel cell death program leads to neutrophil extracellular traps. J. Cell Biol. 176 (2), 231-241 (2007).
  19. Lauth, X., et al. M1 Protein Allows Group A Streptococcal Survival in Phagocyte Extracellular Traps through Cathelicidin Inhibition. J Innate Immun. 1 (3), 202-214 (2009).
  20. Chow, O. A., et al. Statins Enhance Formation of Phagocyte Extracellular Traps. Cell Host Microbe. 8 (5), 445-454 (2010).
  21. Simons, K., Vaz, W. L. Model systems, lipid rafts, and cell membranes. Annu Rev Biophys Biomol Struct. 33, 269-295 (2004).
  22. Bligh, E. G., Dyer, W. J. A rapid method of total lipid extraction and purification. Can J Biochem Physiol. 37, 911-917 (1959).
  23. Brogden, G., Propsting, M., Adamek, M., Naim, H. Y., Steinhagen, D. Isolation and analysis of membrane lipids and lipid rafts in common carp (Cyprinus carpio L). Comp Biochem Physiol B Biochem Mol Biol. 169, 9-15 (2014).
  24. Saldanha, T., Sawaya, A. C., Eberlin, M. N., Bragagnolo, N. HPLC separation and determination of 12 cholesterol oxidation products in fish: comparative study of RI, UV, and APCI-MS detectors. J Agric Food Chem. 54 (12), 4107-4113 (2006).
  25. Hubicka, U., Krzek, J., Woltynska, H., Stachacz, B. Simultaneous identification and quantitative determination of selected aminoglycoside antibiotics by thin-layer chromatography and densitometry. J AOAC Int. 92 (4), 1068-1075 (2009).
  26. Maalouf, K., et al. A modified lipid composition in Fabry disease leads to an intracellular block of the detergent-resistant membrane-associated dipeptidyl peptidase IV. J Inherit Metab Dis. 33 (4), 445-449 (2010).
  27. Correia, M., et al. Helicobacter pylori’s cholesterol uptake impacts resistance to docosahexaenoic acid. Int J Med Microbiol. 304 (3-4), 314-320 (2014).
  28. Gorudko, I. V., et al. Lectin-induced activation of plasma membrane NADPH oxidase in cholesterol-depleted human neutrophils. Arch Biochem Biophys. 516 (2), 173-181 (2011).
  29. Masoud, R., Bizouarn, T., Houée-Levin, C. Cholesterol: A modulator of the phagocyte NADPH oxidase activity – A cell-free study. Redox Biol. 3, 16-24 (2014).
  30. Knight, J. S., et al. Peptidylarginine deiminase inhibition is immunomodulatory and vasculoprotective in murine lupus. J Clin Invest. 123 (7), 2981-2993 (2013).
  31. Reichel, M., et al. Harbour seal (Phoca vitulina) PMN and monocytes release extracellular traps to capture the apicomplexan parasite Toxoplasma gondii. Dev Comp Immunol. 50 (2), 106-115 (2015).
  32. Chuammitri, P., et al. Chicken heterophil extracellular traps (HETs): novel defense mechanism of chicken heterophils. Vet Immunol Immunopathol. 129, 126-131 (2009).
  33. Palic, D., Ostojic, J., Andreasen, C. B., Roth, J. A. Fish cast NETs: Neutrophil extracellular traps are released from fish neutrophils. Dev Comp Immunol. 31 (8), 805-816 (2007).
  34. Ng, T. H., Chang, S. H., Wu, M. H., Wang, H. C. Shrimp hemocytes release extracellular traps that kill bacteria. Dev Comp Immunol. 41 (4), 644-651 (2013).
  35. Hawes, M. C., et al. Extracellular DNA: the tip of root defenses?. Plant Sci. 180 (6), 741-745 (2011).
  36. Brinkmann, V., Zychlinsky, A. Neutrophil extracellular traps: is immunity the second function of chromatin?. J Cell Biol. 198 (5), 773-783 (2012).
  37. Xu, T., et al. Lipid raft-associated β-adducin is required for PSGL-1-mediated neutrophil rolling on P-selectin. J Leukoc Biol. 97 (2), 297-306 (2015).
  38. Ermert, D., et al. Mouse neutrophil extracellular traps in microbial infections. J Innate Immun. 1 (3), 181-193 (2009).
  39. Metzler, K. D., Goosmann, C., Lubojemska, A., Zychlinsky, A., Papayannopoulos, V. A myeloperoxidase-containing complex regulates neutrophil elastase release and actin dynamics during NETosis. Cell Rep. 8 (3), 883-896 (2014).
  40. McGee, D. J., et al. Cholesterol enhances Helicobacter pylori resistance to antibiotics and LL-37. Antimicrob Agents Chemother. 55 (6), 2897-2904 (2011).
check_url/kr/54667?article_type=t

Play Video

Cite This Article
Brogden, G., Neumann, A., Husein, D. M., Reuner, F., Naim, H. Y., von Köckritz-Blickwede, M. Methods to Study Lipid Alterations in Neutrophils and the Subsequent Formation of Neutrophil Extracellular Traps. J. Vis. Exp. (121), e54667, doi:10.3791/54667 (2017).

View Video