Summary

הכנת חלון גולגולת כרוני לרוחב מאפשרת<em> In vivo</em> תצפית בעקבות העורקים התיכון ספיגה מוחין דיסטלי של עכברים

Published: December 29, 2016
doi:

Summary

חסימה כירורגי של ענף עורק דיסטלי באמצע המוח (MCAo) היא מודל משמש לעתים קרובות במחקר שבץ ניסיוני. כתב יד זה מתאר את הטכניקה הבסיסית של MCAo קבע, בשילוב עם הכניסה של חלון גולגולתי לרוחב, אשר מציעה את ההזדמנות עבור מיקרוסקופיה intravital אורך בעכברים.

Abstract

איסכמיה מוחיית מיקוד (כלומר, שבץ איסכמי) עלולה לגרום לפגיעה מוחית חמורה, מה שמוביל להפסד ניכר של תפקוד עצבי וכתוצאה מכך שורה של מנוע מוגבלויות קוגניטיביות. שכיחות גבוהה שלה מהווה נטל בריאותי חמור, כמו שבץ הוא בין הגורמים העיקריים נכות לטווח ארוך ומוות ברחבי העולם 1. שחזור של תפקוד עצבי הוא, ברוב המקרים, רק חלקית. עד כה, אפשרויות טיפול מוגבלות מאוד, בפרט בשל חלון זמן צר thrombolysis 2,3. קביעת שיטות כדי להאיץ התאוששות משבצת נשארת מטרה רפואית ממשלה; עם זאת, זה כבר הקשה על ידי תובנות מכניסטית מספיק לתהליך ההחלמה. חוקרי שבץ ניסיוני להעסיק מכרסמי מודלים בתדירות של איסכמיה המוחית מוקדים. מעבר השלב האקוטי, מחקר שבץ מתמקד יותר ויותר על השלב תת-אקוטי וכרוני הבאים איסכמיה מוחית. רוב החוקרים שבץ להחיל קבע או טראןחסימת sient של MCA בעכברים או חולדות. בחולים, חסימות של MCA הן בין הגורמים השכיחים ביותר של איסכמי 4 פעימות. מלבד חסימה הפרוקסימלי של MCA באמצעות מודל נימה, חסימה כירורגית של MCA דיסטלי הוא כנראה המודל הנפוץ ביותר במחקר שבץ ניסיוני 5. ספיגה של דיסטלי (אל הסתעפות של העורקים lenticulo-striate) סניף MCA בדרך כלל חוסך בסטריאטום ובעיקר משפיע על הניאוקורטקס. חסימת כלי יכולה להיות קבועה או חולפת. שחזור גבוה של נפח נגע ושיעורי תמותה נמוכים מאוד ביחס לתוצאה לטווח הארוך הם היתרונות העיקריים של מודל זה. כאן, אנו מדגימים כיצד לבצע חלון גולגולתי כרוני (CW) לרוחב הכנה בסינוס sagittal, ולאחר מכן כיצד כמנתח לגרום שבץ דיסטלי מתחת לחלון באמצעות גישה craniotomy. גישה זו ניתן ליישם עבור הדמיה רציפה של שינויים אקוטיים והכרוניים הבאים איסכמיה באמצעותEPI-מאירה, סריקת לייזר confocal, וכן במיקרוסקופ intravital שני הפוטונים.

Introduction

Stroke is among the principal causes of long-term disability and death worldwide1, coming second after coronary heart disease. In addition, stroke is the primary cause of long-term disability, underscoring its tremendous socioeconomic impact6-8. Beyond acute treatment, investigating new approaches and mechanisms to accelerate and enhance recovery after stroke remains a prime medical goal7.

In the last few decades, data from experimental stroke research has contributed substantially to understanding the complex pathophysiological cascades triggered by ischemia9,10. Excitotoxicity, apoptosis, peri-infarct depolarization, and inflammation have been identified as the most relevant mediators of cell death following focal cerebral ischemia. Moreover, using animal models of cerebral ischemia, important concepts, diagnostic modalities, and therapeutic approaches have been developed and validated (e.g., “penumbra” and thrombolysis)11.

The availability of experimental stroke models, combined with non-invasive imaging modalities (e.g., magnetic resonance imaging (MRI), computed tomography, or laser speckle contrast analysis), enables the researcher to investigate hyperacute and chronic pathophysiological changes induced by the ischemic insult in a longitudinal manner12. Along with studying the spatiotemporal profile of the evolving lesion, changes resembling neuronal plasticity can be investigated and correlated to functional outcomes and histological findings. Within the last few years, further methodological advances have been made using the combination of cerebral ischemia models and in vivo microscopy via cranial windows13. These new techniques allow investigators to analyze the neurovascular unit at the cellular and molecular level, with great analytic power in the acute, subacute, and chronic phases following focal cerebral ischemia14. Moreover, in vivo microscopy imaging of microcirculatory dynamics has revealed novel aspects of cerebral microvasculature function and angioarchitecture, with significant pathophysiological relevance15-17.

In this protocol, we present how to perform a chronic CW preparation lateral to the sagittal sinus and how to surgically induce a distal stroke underneath the window. This mouse model can be applied to sequential imaging of acute, subacute, and chronic changes following focal cerebral ischemia via epi-illuminating, confocal laser scanning, and two-photon intravital microscopy.

Protocol

המסר אתיקה: ניסויים מעורבים בנושאים בעלי חיים בוצעו בהתאם להנחיות והתקנות שנקבעו על ידי Landesamt fuer Gesundheit und Soziales, ברלין, גרמניה (G0298 / 13) ואת הקריטריונים מגיעים, לפי העניין. לצורך המחקר, 10 עד 12 שבועות בן זכר C57Bl / 6J שימשו. 1. הכנת חלון גולגו?…

Representative Results

ציר הזמן ואת תוצאות נציג מוצגים איורים 2 ו -3. הכנת החלון גולגולתי, עם לרוחב חלון גולגולתי קטן בסינוס sagittal המעולה (האיור 2 B, C, D) תוצאות שיעור תמותה ותחלואה נמוכה מאוד כאשר היא מבוצעת על ידי מנתח מנוסה. כל 10 החיה שרדו, וכל CW הכר?…

Discussion

שבץ מוחי הוא בין הגורמים העיקריים נכות לטווח ארוך ומוות ברחבי העולם 1. מעבר לטיפול אקוטי, חוקרת גישות מנגנונים חדשים כדי להאיץ ולשפר את ההתאוששות לאחר שבץ נשאר מטרה 7 רפואי הממשלה. חוקרי שבץ ניסיוני להעסיק מכרסמי מודלים בתדירות של איסכמיה המוחית מוקדים. למ…

Disclosures

The authors have nothing to disclose.

Acknowledgements

VP is a participant in the Charité Clinical Scientist Program, funded by the Charité – Universitätsmedizin Berlin and the Berlin Institute of Health. TB is an SNSF PostDoc Mobility fellow. The authors receive grant support from EinsteinStiftung/A-2012-153 to PV.

Materials

Binocular surgical microscope Zeiss Stemi 2000 C
Light source for microscope Zeiss CL 6000 LED
Heating pad with rectal probe FST 21061-10
Stereotactic frame Kopf Model 930
Anaethesia system for isoflurane Draeger
Isoflurane Abott
Dumont forceps #5 FST 11251-10
Dumont forceps #7 FST 11271-30
Bipolar Forceps Erbe 20195-501
Bipolar Forceps  Erbe                              20195-022
Microdrill FST                              18000-17         
Needle holder FST 12010-14
5-0 silk suture Feuerstein, Suprama
7-0 silk suture Feuerstein,Suprama
8-0 silk suture Feuerstein, Suprama
Veterinary Recovery Chamber Peco Services V1200

References

  1. Mukherjee, D., Patil, C. G. Epidemiology and the global burden of stroke. World Neurosurg. 76 (6), 85-90 (2011).
  2. Ebinger, M., Prüss, H., et al. Effect of the use of ambulance-based thrombolysis on time to thrombolysis in acute ischemic stroke: a randomized clinical trial. JAMA. 311 (16), 1622-1631 (2014).
  3. Ebinger, M., Lindenlaub, S., et al. Prehospital thrombolysis: a manual from Berlin. J vis Exp. (81), e50534 (2013).
  4. Bogousslavsky, J., Van Melle, G., Regli, F. The Lausanne Stroke Registry: analysis of 1,000 consecutive patients with first stroke. Stroke. 19 (9), 1083-1092 (1988).
  5. Engel, O., Kolodziej, S., Dirnagl, U., Prinz, V. Modeling stroke in mice – middle cerebral artery occlusion with the filament model. J Vis Exp. (47), (2011).
  6. Donnan, G. A., Fisher, M., Macleod, M., Davis, S. M. Stroke. Lancet. 371 (9624), 1612-1623 (2008).
  7. Meairs, S., Wahlgren, N., et al. Stroke research priorities for the next decade–A representative view of the European scientific community. Cerebrovasc Dis. 22 (2-3), 75-82 (2006).
  8. Rosamond, W., Flegal, K., et al. Heart disease and stroke statistics–2007 update: a report from the American Heart Association Statistics Committee and Stroke Statistics Subcommittee. Circulation. 115 (5), 69-171 (2007).
  9. Moskowitz, M. A., Lo, E. H., Iadecola, C. The science of stroke: mechanisms in search of treatments. Neuron. 67 (2), 181-198 (2010).
  10. Dirnagl, U., Iadecola, C., Moskowitz, M. A. Pathobiology of ischaemic stroke: an integrated view. Trends Neurosci. 22 (9), 391-397 (1999).
  11. Dirnagl, U., Endres, M. Found in Translation: Preclinical Stroke Research Predicts Human Pathophysiology, Clinical Phenotypes, and Therapeutic Outcomes. Stroke. , (2014).
  12. Prinz, V., Hetzer, A. -. M., et al. MRI heralds secondary nigral lesion after brain ischemia in mice: a secondary time window for neuroprotection. J Cereb Blood Flow Metab. , (2015).
  13. Shih, A. Y., Mateo, C., Drew, P. J., Tsai, P. S., Kleinfeld, D. A polished and reinforced thinned-skull window for long-term imaging of the mouse brain. J Vis Exp. (61), (2012).
  14. Holtmaat, A., Bonhoeffer, T., et al. Long-term, high-resolution imaging in the mouse neocortex through a chronic cranial window. Nat Protoc. 4 (8), 1128-1144 (2009).
  15. Iadecola, C., Dirnagl, U. The microcircualtion–fantastic voyage: introduction. Stroke. 44 (6), 83 (2013).
  16. Blinder, P., Tsai, P. S., Kaufhold, J. P., Knutsen, P. M., Suhl, H., Kleinfeld, D. The cortical angiome: an interconnected vascular network with noncolumnar patterns of blood flow. Nat Neurosc. 16 (7), 889-897 (2013).
  17. Shih, A. Y., Driscoll, J. D., Drew, P. J., Nishimura, N., Schaffer, C. B., Kleinfeld, D. Two-photon microscopy as a tool to study blood flow and neurovascular coupling in the rodent brain. J Cereb Blood Flow Metab. 32 (7), 1277-1309 (2012).
  18. Cabrales, P., Carvalho, L. J. M. Intravital microscopy of the mouse brain microcirculation using a closed cranial window. J Vis Exp. (45), (2010).
  19. Rosell, A., Agin, V., et al. Distal occlusion of the middle cerebral artery in mice: are we ready to assess long-term functional outcome. Transl Stroke Res. 4 (3), 297-307 (2013).
  20. Dorand, R. D., Barkauskas, D. S., Evans, T. A., Petrosiute, A., Huang, A. Y. Comparison of intravital thinned skull and cranial window approaches to study CNS immunobiology in the mouse cortex. Intravital. 3 (2), (2014).
  21. Balkaya, M., et al. Assessing post-stroke behavior in mouse models of focal ischemia. J Cereb Blood Flow Metab. 33 (3), 330-338 (2013).
  22. Balkaya, M., Kröber, J., Gertz, K., Peruzzaro, S., Endres, M. Characterization of long-term functional outcome in a murine model of mild brain ischemia. J Neurosci Methods. 213 (2), 179-187 (2013).
  23. Freret, T., Bouet, V., et al. Behavioral deficits after distal focal cerebral ischemia in mice: Usefulness of adhesive removal test. Beh Neurosci. 123 (1), 224-230 (2009).
  24. Liu, S., Zhen, G., Meloni, B. P., Campbell, K., Winn, H. R. RODENT STROKE MODEL GUIDELINES FOR PRECLINICAL STROKE TRIALS (1ST EDITION). J Exp Stroke Trans Med. 2 (2), 2-27 (2009).
  25. Florian, B., Vintilescu, R., et al. Long-term hypothermia reduces infarct volume in aged rats after focal ischemia. Neurosci Lett. 438 (2), 180-185 (2008).
  26. Noor, R., Wang, C. X., Shuaib, A. Effects of hyperthermia on infarct volume in focal embolic model of cerebral ischemia in rats. Neurosci Lett. 349 (2), 130-132 (2003).
  27. Barber, P. A., Hoyte, L., Colbourne, F., Buchan, A. M. Temperature-regulated model of focal ischemia in the mouse: a study with histopathological and behavioral outcomes. Stroke. 35 (7), 1720-1725 (2004).
  28. Shin, H. K., Nishimura, M., et al. Mild induced hypertension improves blood flow and oxygen metabolism in transient focal cerebral ischemia. Stroke. 39 (5), 1548-1555 (2008).
  29. Kapinya, K. J., Prass, K., Dirnagl, U. Isoflurane induced prolonged protection against cerebral ischemia in mice: a redox sensitive mechanism. Neuroreport. 13 (11), 1431-1435 (2002).
  30. Gertz, K., Priller, J., et al. Physical activity improves long-term stroke outcome via endothelial nitric oxide synthase-dependent augmentation of neovascularization and cerebral blood flow. Circ Res. 99 (10), 1132-1140 (2006).
  31. Dirnagl, U. Bench to bedside: the quest for quality in experimental stroke research. J Cereb Blood Flow Metab. 26 (12), 1465-1478 (2006).
check_url/kr/54701?article_type=t

Play Video

Cite This Article
Bayerl, S. H., Nieminen-Kelhä, M., Broggini, T., Vajkoczy, P., Prinz, V. Lateral Chronic Cranial Window Preparation Enables In Vivo Observation Following Distal Middle Cerebral Artery Occlusion in Mice. J. Vis. Exp. (118), e54701, doi:10.3791/54701 (2016).

View Video