Summary

Hoge-resolutie optische kaart brengen van de Muis sinusknoop

Published: December 02, 2016
doi:

Summary

Hier presenteren we een protocol voor optische kaart brengen van de elektrische activiteit van de muis rechteratrium en vooral de sinusknoop, bij een hoge ruimtelijke en temporele resolutie.

Abstract

Sino-atrial node (SAN) dysfunctions and associated complications constitute important causes of morbidity in patients with cardiac diseases. The development of novel pharmacological therapies to cure these patients relies on the thorough understanding of both normal physiology and pathophysiology of the SAN. Among the studies of cardiac pacemaking, the mouse SAN is widely used due to its feasibility for modifications in the expression of different genes that encode SAN ion channels or calcium handling proteins. Emerging evidence from electrophysiological and histological studies has also proved the representativeness and similarity of the mouse SAN structure and functions to larger mammals, including the presence of specialized conduction pathways from the SAN to the atrium and a complex pacemakers’ hierarchy within the SAN. Recently, the technique of optical mapping has greatly facilitated the exploration and investigation of the origin of excitation and conduction within and from the mouse SAN, which in turn has extended the understanding of the SAN and benefited clinical treatments of SAN dysfunction associated diseases. In this manuscript, we have described in detail how to perform the optical mapping of the mouse SAN from the intact, Langendorff-perfused heart and from the isolated atrial preparation. This protocol is a useful tool to enhance the understanding of mouse SAN physiology and pathophysiology.

Introduction

Novel scientific breakthroughs that lead to leaps in the understanding of human physiology are often preceded by technological advances. Fluorescent optical mapping, for example, enables investigation of multiple physiological parameters in both cells and tissues.1,2 It significantly improved our understanding of how the anatomical structure is associated with electrophysiological functions and dysfunctions. In the heart, the natural pacemaker and conduction systems such as the sinoatrial node (SAN) and the atrioventricular junction consist of nodal myocytes that are insulated by the surrounding atrial myocytes.3-5 Such organization creates complex three-dimensional structures with specialized electrical properties. Both structural and functional remodeling of these pacemaker structures has been recognized to form significant electrophysiological heterogeneities.6,7 Understanding the mechanism underlying how such heterogeneities result in SAN dysfunctions and atrial arrhythmogenesis will dramatically benefit the clinical treatment of these diseases. It requires a technique to visualize the propagation of electrical signals at the tissue level, such as optical mapping.

Recently, accumulating evidence has proven the advance of optical mapping in studies of atrial electrophysiology and pathology.2 However, novel and rigorous studies are dependent on the accurate interpretation of experimental data, whose validity and stability rely on careful experiment protocols. Genetically modified mice are extensively used for research as animal models of human diseases including sick sinus syndrome, pacemaker abnormalities and atrial arrhythmias.6,8-11 Thus, a combination of fluorescent optical mapping with transgenic mouse models provides a powerful tool to study cardiac electrical abnormalities associated with various pathologies. In this paper, we present a protocol for high-resolution optical mapping of the mouse SAN and atrium. Specifically, we discuss and compare different dye loading approaches, time effects on dye bleaching and heart rate stability during the experiment.

Protocol

Alle experimenten werden uitgevoerd in overeenstemming met de National Institutes of Health Guide voor de Zorg en gebruik van proefdieren (NIH Pub nr. 80-23). Alle methoden en protocollen die worden gebruikt in deze studies zijn door de Universiteit van Wisconsin Animal Care en gebruik Protocol goedgekeurd naar aanleiding van de Richtlijnen voor de Zorg en gebruik van proefdieren gepubliceerd door de NIH (publicatie nr 85-23, herzien 1996). Alle dieren die worden gebruikt in deze studie kregen humane zorg in overeenstemming met de Gids voor…

Representative Results

Optische kaart brengen van de Intact SAN uit de Langendorff-geperfuseerde Heart Een typisch voorbeeld van een RA activatie hoogtekaart gereconstrueerd spontane sinusritme getoond in figuur 3 voor een Langendorff-geperfuseerde muizenhart. De vroege activatie punt ligt in het gebied nabij de intercaval SVC waarbij de SAN anatomisch gedefinieerd. 3,16 Twee RA activatie contourkaarten verworven 1,0 en 0,5 msec bemonsteringssnelheid zijn get…

Discussion

Hier presenteerden wij twee soorten muizen SAN preparaten: 1) intact SAN in het Langendorff-geperfuseerde hele hart, en 2) SAN in het geïsoleerde, open atriale preparaat. Deze twee types van de voorbereiding dienen verschillende experimentele doeleinden. In de Langendorff-geperfuseerde hele hartsvoorbereiding, wordt de intacte atriale structuur behouden waardoor het mogelijk complexe atriale aritmieën zoals atriumfibrillatie en interacties tussen de SAN en atrium bestuderen bij inspringende tachycardie. 6 d…

Disclosures

The authors have nothing to disclose.

Acknowledgements

We are supported by the University of Wisconsin-Madison Medical School start-up (A.V.G.).

Materials

water jacket Radnoti 1660 Series Tissue Bath for Large Organ or Single Cell Isolation Procedures
water bath / circulator Fisher Scientific 1016S
pressure amplifier AD Instruments MLT0670
EMD Millipore Nylon Net Filters Fisher Scientific NY1102500
Pressure transducer AD Instruments MLT0670
Stainless Steel Minutien Pins – 0.1mm Diameter Fine Science Tools 26002-10 
Perfusion pump World Precision Instruments PERIPRO-4LS
Superfusion pump World Precision Instruments PERIPRO-4HS
Vannas Tubingen scissors  World Precision Instruments 503379
Dumont forceps World Precision Instruments 501201, 500085
Mayo scissors World Precision Instruments 501750
Kelly hemostatic forceps World Precision Instruments 501241
Iris forceps World Precision Instruments 15917
Iris scissors World Precision Instruments 501263
ECG 12 mm needle (29-gauge) electrodes (monopolar)  AD Instruments MLA1203
in-line Luer injection port Ibidi 10820
Ultima-L CMOS camera  SciMedia MiCAM-05 
halogen lamp Moritex USA Inc MHAB-150W
NaCl Fisher Scientific S271-1
CaCl2 (2H2O) Fisher Scientific C79-500
KCl Fisher Scientific S217-500
MgCl2 (6H2O) Fisher Scientific M33-500
NaH2PO4 (H2O) Fisher Scientific S369-500
NaHCO3 Fisher Scientific S233-3
D-Glucose Fisher Scientific D16-1
Blebbistatin Tocris Bioscience 1760
RH237 ThermoFisher Scientific S1109
Dimethyl sulphoxide (DMSO) Sigma-Aldrich D2650

References

  1. Efimov, I. R., Nikolski, V. P., Salama, G. Optical imaging of the heart. Circ Res. 95 (1), 21-33 (2004).
  2. Herron, T. J., Lee, P., Jalife, J. Optical imaging of voltage and calcium in cardiac cells & tissues. Circ Res. 110 (4), 609-623 (2012).
  3. Fedorov, V. V., Glukhov, A. V., Chang, R. Conduction barriers and pathways of the sino-atrial pacemaker complex: their role in normal rhythm and atrial arrhythmias. Am J Physiol Heart Circ Physiol. , (2012).
  4. Boyett, M. R., Honjo, H., Kodama, I. The sinoatrial node, a heterogeneous pacemaker structure. Cardiovasc Res. 47 (4), 658-687 (2000).
  5. Glukhov, A. V., et al. Sinoatrial Node Reentry in a Canine Chronic Left Ventricular Infarct Model: The Role of Intranodal Fibrosis and Heterogeneity of Refractoriness. Circ Arrhythm Electrophysiol. , (2013).
  6. Glukhov, A. V., et al. Calsequestrin 2 deletion causes sinoatrial node dysfunction and atrial arrhythmias associated with altered sarcoplasmic reticulum calcium cycling and degenerative fibrosis within the mouse atrial pacemaker complex. Eur Heart J. 36 (11), 686-697 (2015).
  7. John, R. M., Kumar, S. Sinus Node and Atrial Arrhythmias. Circulation. 133 (19), 1892-1900 (2016).
  8. Swaminathan, P. D., et al. Oxidized CaMKII causes cardiac sinus node dysfunction in mice. J Clin Invest. 121 (8), 3277-3288 (2011).
  9. Glukhov, A. V., Fedorov, V. V., Anderson, M. E., Mohler, P. J., Efimov, I. R. Functional anatomy of the murine sinus node: high-resolution optical mapping of ankyrin-B heterozygous mice. Am J Physiol Heart Circ Physiol. 299 (2), H482-H491 (2010).
  10. Egom, E. E., et al. Impaired sinoatrial node function and increased susceptibility to atrial fibrillation in mice lacking natriuretic peptide receptor C. J Physiol. 593 (5), 1127-1146 (2015).
  11. Torrente, A. G., et al. Burst pacemaker activity of the sinoatrial node in sodium-calcium exchanger knockout mice. Proc Natl Acad Sci U S A. 112 (31), 9769-9774 (2015).
  12. Lang, D., Sulkin, M., Lou, Q., Efimov, I. R. Optical mapping of action potentials and calcium transients in the mouse heart. J Vis Exp. (55), e3275 (2011).
  13. Fedorov, V. V., et al. Application of blebbistatin as an excitation-contraction uncoupler for electrophysiologic study of rat and rabbit hearts. Heart Rhythm. 4 (5), 619-626 (2007).
  14. Swift, L. M., et al. Properties of blebbistatin for cardiac optical mapping and other imaging applications. Pflugers Arch. 464 (5), 503-512 (2012).
  15. Laughner, J. I., Ng, F. S., Sulkin, M. S., Arthur, R. M., Efimov, I. R. Processing and analysis of cardiac optical mapping data obtained with potentiometric dyes. Am J Physiol Heart Circ Physiol. 303 (7), H753-H765 (2012).
  16. Liu, J., Dobrzynski, H., Yanni, J., Boyett, M. R., Lei, M. Organisation of the mouse sinoatrial node: structure and expression of HCN channels. Cardiovasc Res. 73 (4), 729-738 (2007).
  17. Verheijck, E. E., et al. Electrophysiological features of the mouse sinoatrial node in relation to connexin distribution. Cardiovasc Res. 52 (1), 40-50 (2001).
  18. Krishnaswamy, P. S., et al. Altered parasympathetic nervous system regulation of the sinoatrial node in Akita diabetic mice. J Mol Cell Cardiol. 82, 125-135 (2015).
  19. Nygren, A., Lomax, A. E., Giles, W. R. Heterogeneity of action potential durations in isolated mouse left and right atria recorded using voltage-sensitive dye mapping. Am J Physiol Heart Circ Physiol. 287 (6), H2634-H2643 (2004).
  20. Efimov, I. R., Fedorov, V. V., Joung, B., Lin, S. F. Mapping cardiac pacemaker circuits: methodological puzzles of the sinoatrial node optical mapping. Circ Res. 106 (2), 255-271 (2010).
  21. Aschar-Sobbi, R., et al. Increased atrial arrhythmia susceptibility induced by intense endurance exercise in mice requires TNFalpha. Nat Commun. 6, 6018 (2015).
  22. Hansen, B. J., et al. Atrial fibrillation driven by micro-anatomic intramural re-entry revealed by simultaneous sub-epicardial and sub-endocardial optical mapping in explanted human hearts. Eur Heart J. 36 (35), 2390-2401 (2015).
  23. Lang, D., Petrov, V., Lou, Q., Osipov, G., Efimov, I. R. Spatiotemporal control of heart rate in a rabbit heart. J Electrocardiol. 44 (6), 626-634 (2011).
  24. Kanlop, N., Sakai, T. Optical mapping study of blebbistatin-induced chaotic electrical activities in isolated rat atrium preparations. J Physiol Sci. 60 (2), 109-117 (2010).
  25. Glukhov, A. V., Flagg, T. P., Fedorov, V. V., Efimov, I. R., Nichols, C. G. Differential K(ATP) channel pharmacology in intact mouse heart. J Mol Cell Cardiol. 48 (1), 152-160 (2010).
  26. Wu, J., et al. Altered sinoatrial node function and intra-atrial conduction in murine gain-of-function Scn5a+/DeltaKPQ hearts suggest an overlap syndrome. Am J Physiol Heart Circ Physiol. 302 (7), H1510-H1523 (2012).
check_url/kr/54773?article_type=t

Play Video

Cite This Article
Lang, D., Glukhov, A. V. High-resolution Optical Mapping of the Mouse Sino-atrial Node. J. Vis. Exp. (118), e54773, doi:10.3791/54773 (2016).

View Video