Summary

Stabile Zelllinien zur Untersuchung von Proteinfunktionen, Spatiotemporal Lokalisierung und Protein Interaction Networks induzierbare LAP-getaggt

Published: December 24, 2016
doi:

Summary

We describe a method for generating localization and affinity purification (LAP)-tagged inducible stable cell lines for investigating protein function, spatiotemporal subcellular localization and protein-protein interaction networks.

Abstract

Multi-protein complexes, rather than single proteins acting in isolation, often govern molecular pathways regulating cellular homeostasis. Based on this principle, the purification of critical proteins required for the functioning of these pathways along with their native interacting partners has not only allowed the mapping of the protein constituents of these pathways, but has also provided a deeper understanding of how these proteins coordinate to regulate these pathways. Within this context, understanding a protein’s spatiotemporal localization and its protein-protein interaction network can aid in defining its role within a pathway, as well as how its misregulation may lead to disease pathogenesis. To address this need, several approaches for protein purification such as tandem affinity purification (TAP) and localization and affinity purification (LAP) have been designed and used successfully. Nevertheless, in order to apply these approaches to pathway-scale proteomic analyses, these strategies must be supplemented with modern technological developments in cloning and mammalian stable cell line generation. Here, we describe a method for generating LAP-tagged human inducible stable cell lines for investigating protein subcellular localization and protein-protein interaction networks. This approach has been successfully applied to the dissection of multiple cellular pathways including cell division and is compatible with high-throughput proteomic analyses.

Introduction

To investigate the cellular function of an uncharacterized protein it is important to determine its in vivo spatiotemporal subcellular localization and its interacting protein partners. Traditionally, single and tandem epitope tags fused to the N or C-terminus of a protein of interest have been used to facilitate protein localization and protein interaction studies. For example, the tandem affinity purification (TAP) technology has enabled the isolation of native protein complexes, even those that are in low abundance, in both yeast and mammalian cell lines1,2. The localization and affinity purification (LAP) technology, is a more recent development that modifies the TAP procedure to include a localization component through the introduction of the green fluorescent protein (GFP) as one of the epitope tags3. This approach has given researchers a deeper understanding of a protein’s subcellular localization in living cells while also retaining the ability to perform TAP complex purifications to map protein-protein interaction networks.

However, there are many issues associated with the use of TAP/LAP technologies that has hampered their widespread use in mammalian cells. For example, the length of time that is necessary to generate a stable cell line expressing a TAP/LAP tagged protein of interest; which typically relies on cloning the gene of interest into a viral vector and selecting single cell stable integrants with the desired expression level. Additionally, many cellular pathways are sensitive to constitutive protein overexpression (even at low levels) and can arrest cells or trigger cell death over time making the generation of a TAP/LAP stable cell line impossible. These and other constraints have impeded LAP/TAP methodologies from becoming high-throughput systems for protein localization and protein complex elucidation. Therefore, there has been considerable interest in the development of an inducible high-throughput LAP-tagging system for mammalian cells that takes advantage of current innovations in cloning and cell line technologies.

Here we present a protocol for generating stable cell lines with Doxycycline/Tetracycline (Dox/Tet) inducible LAP-tagged proteins of interest that applies advances in both cloning and mammalian cell line technologies. This approach streamlines the acquisition of data with regards to LAP-tagged protein subcellular localization, protein complex purification and identification of interacting proteins4. Although affinity proteomics utilizes a wide range of techniques for protein complex elucidation5, our approach is beneficial for expediting the identification of these complexes and their native interaction networks and is amenable to high-throughput protein tagging that is necessary to investigate complex biological pathways that contain a multitude of protein constituents. Key to this approach are advancements in cloning strategies that enable high fidelity and expedited cloning of target genes into an array of vectors for gene expression in vitro, in various organisms like bacteria and baculovirus, and in mammalian cells6,7. Additionally, the ORFeome collaboration has cloned thousands of sequence validated open reading frames in vectors that incorporate these advances in cloning, which are available to the scientific community8-11. In our system, the pGLAP1 LAP-tagging vector enables the simultaneous cloning of a large number of clones, which facilitates high-throughput LAP-tagging. This expedited cloning procedure is coupled to a streamlined approach for generating cell lines with LAP-tagged genes of interest inserted at a single pre-determined genomic locus. This makes use of cell lines that contain a single flippase recognition target (FRT) site within their genome, which is the site of integration for LAP-tagged genes. These cell lines also express the tetracycline repressor (TetR) that binds to Tet operators (TetO2) upstream of the LAP-tagged genes and silences their expression in the absence of Dox/Tet. This allows for Dox/Tet inducible expression of the LAP-tagged protein at any given time. Having the capability of inducible LAP-tagged protein expression is critical, since many cellular pathways are sensitive to the levels of critical proteins governing the pathway and can arrest cell growth or trigger cell death when these proteins are constitutively overexpressed, even at low levels, making the generation of non-inducible LAP-tagged stable cell lines impossible12.

Protocol

HINWEIS: Ein Überblick über die Erzeugung von induzierbaren LAP-markierten stabilen Zelllinien für jedes interessierende Protein ist in Abbildung 1 veranschaulicht und die Übersicht von LAP-tagged Protein Expression, Reinigung und Vorbereitung für die Massen Proteom – Analysen ist in Abbildung 3 dargestellt. 1. Klonierung des offenen Leserahmens (ORF) des Gens in der LAP-Tag Vector Klonierung des ORF des Gens von Interesse in den Shuttle-Vektor. Verwenden der Polymerasekettenreaktion (PCR) entweder N-terminale Fusion oder C-terminale Fusion des ORF von Interesse mit den entsprechenden attB1 und attB2 Stellen innerhalb den Primern zu amplifizieren. Siehe Tabelle 1 für die Primersequenzen und Tabelle 2 für die PCR – Bedingungen. Gel reinigt die PCR-Produkte, indem sie auf einem 1% Agarose-Gel-Lösung. Excise das verstärkte Band, die die richtige Größe aus dem Gel ist und extrahieren sie aus dem Gelstück eine DNA-g unter Verwendung vonel-Extraktions-Kits gemäß den Anweisungen des Herstellers. Inkubieren des gereinigten attB enthält PCR – Produkte mit einem attP enthaltenden Shuttle – Vektor und die Rekombinase , die die PCR – Produkte gemäß den Anweisungen des Herstellers zu rekombinieren in den Vektor erlaubt (siehe M aterialien Tabelle). HINWEIS: Leere Shuttle – Vektoren und LAP-Tagging – Vektoren , welche die ccd – B – Gen enthalten und in ccd B resistenten Bakterienzellen vermehrt werden (siehe Materialien Tabelle). Jedoch wird das ccdB Gen rekombiniert, wenn sich ein ORF in diese Vektoren eingeführt wird, damit Standard DH5a E. coli – Zellen verwenden , wenn Vektoren mit geklonten ORFs ausbreitet. Trans DH5 E. coli – Zellen mit 1 & mgr; l des Reaktionsprodukts und die Platte , die die transformierten Zellen auf eine Luria – Brühe (LB) Agar – Platte mit 50 mg / ml Kanamycin 13. Wählen Sie die Kanamycin-resistente Kolonien. Wachsen die ausgewählten Kolonien in LB mirdia mit 50 mg / ml Kanamycin, machen Sie eine Mini-Prep – DNA und Gen – Integration bestätigen durch DNA – Sequenzierung der Sequenzierungsprimer in Tabelle 3 aufgeführt werden. Die Übertragung des Gens von Interesse aus dem Shuttle-Vektor in das LAP-Tag Vector. Inkubieren Sie die Shuttle-Vektor, der die Sequenz überprüft Gen von Interesse ORF mit dem LAP-Tag-Vektor (pGLAP1 für N-terminale Fusion) und die Rekombinase, die die Übertragung des Gens von Interesse aus dem Shuttle-Vektor in das LAP-Tag Vektor vermittelt als enthält pro Anweisungen des Herstellers (siehe Materialien). HINWEIS: Eine Reihe von LAP / TAP – Vektoren , die basierend auf dem gewünschten Promotor verwendet werden können, Epitop-tag und N oder C-terminalen Markierungs können in Tabelle 4 gefunden werden. Transformation DH5 E. coli Zellen mit 1 & mgr; l des Reaktionsprodukts und die Platte , die die transformierten Zellen auf einer LB – Agarplatte mit 100 mg / ml Ampicillin 13. Wählen Sie das Ampicillin-resistente colonehmen. Wachsen die ausgewählten Kolonien in LB – Medium mit 100 mg / ml Ampicillin, ein DNA – Mini-Prep machen, und bestätigen Gen Integration durch DNA – Sequenzierung der Sequenzierung unter Verwendung von Primern , die in Tabelle 5. 2. Erzeugung eines induzierbaren stabilen Zelllinie, die das LAP-getaggt bekundet Gen von Interesse Wählen Sie die Zelllinie am besten geeignet für das Projekt von Interesse. Alternativ können Sie eine Wirtszelllinie aus den bestehenden Zelllinie erstellen, die konstitutiv das TetR exprimiert und enthält eine FRT-Stelle, die das LAP-markierte Gen von Interesse ermöglicht, stabil in das Genom integriert werden (siehe Materialien). Hinweis: Dieses Protokoll verwendet eine HEK293 – Zelllinie, die den TetR und einer FRT – Stelle enthält, die in -tet DMEM / F12 – Medium gezüchtet [hergestellt mit 10% fötalem Rinderserum (FBS) , die von Tetracycline (-tet) frei ist] 4 . Bestimmen Sie die Mindestkonzentration von Hygromycin erforderlich, um die Wirtszelllinie innerhalb 1 bis 2 wee zu tötenks nach Wirkstoffzugabe. Die Konzentration kann zwischen Wirtszelllinien, variieren mit den meisten im Bereich zwischen 100 & mgr; g / ml und 800 & mgr; g / ml. HINWEIS: HEK293 gezüchteten Zellen in -tet DMEM / F12 – Medium mit 100 ug / ml Hygromycin bei 37 ° C und 5% CO 2 werden in 1-2 Wochen absterben. Co-Transfizieren des Vektors, die der Flippase Rekombinase exprimiert (vermittelt die Integration des LAP-tagged Gen von Interesse in die FRT-Stelle innerhalb des Genoms der Zelle) mit dem LAP-markierten Vektor in HEK293 Zellen, die ein Transfektionsreagenz Verwendung gemäß den Anweisungen des Herstellers . Verwenden Sie ein Verhältnis von 4: 1 von Rekombinase Vektor zu Vektor LAP 14. HINWEIS: Das optimale Verhältnis auf der Wirtszelllinie und Verfahren der Transfektion abhängig ist, und kann eine Titration erfordern. Ein Verhältnis von 4: 1 funktioniert gut für die meisten Zelllinien. Fügen Sie ein Mock-transfizierten Platte als Negativkontrolle. Eines Tages nach der Transfektion, ersetzen Sie die -tet DMEM / F12-Medium mit frischem Medium. Zwei Tage nach der transfectiauf, geteilte Zellen auf 25% Konfluenz. Lassen Zellen ~ 5 Stunden zu befestigen, dann Hygromycin enthaltenden -tet DMEM / F12-Medium bei der in Schritt 2.2 vorbestimmten Konzentration hinzuzufügen. Für HEK293 verwenden Zellen 100 ug / ml Hygromycin. HINWEIS: Die FRT HEK293-Zellinie enthält, enthält auch das TetR, die mit Blasticidin Widerstand verbunden ist, damit 5 & mgr; g / ml Blasticidin wird während der stabilen Zelllinie Auswahlprozess verwendet zur Auswahl für den TetR und leaky Expression zu minimieren. Ersetzen Hygromycin-haltigen -tet DMEM / F12-Medium wie nötig, bis deutliche Zellfoci erscheinen, die undurchsichtige Flecken gegen die transparente Platte ähneln. In 20 ul von Trypsin auf der jeweils Zellfoci und pipettieren auf und ab 2 mal mit einem 200 ul Pipettenspitze. Platz Zellen in einer 24-Well-Platte und erweitern Sie die Zellen durch kontinuierliches Wachstum in Hygromycin enthaltenden -tet DMEM / F12-Medium. Screen-Zellen für die induzierbare LAP-markierten Proteinexpression durch Fest Zelle oder Live-Zell-Fluoreszenzmikroskopie und / oderWestern – Blot für das GFP – Tag innerhalb des LAP-tag 15. 3. Reinigung von LAP-markierten Proteinkomplexe HINWEIS: Die folgenden LAP-markierte Protein Reinigungsprotokoll Details Empfehlungen über die Bedingungen und für einen typischen LAP-markierten Proteinreinigung auf früheren Erfahrungen basiert, verwendet Bände. Vorsicht sollte jedoch ausgeübt werden, um sicherzustellen, dass empirische Optimierung für jede Proteinkomplex und Proteinexpressionsniveau von Interesse, die besten Ergebnisse liefern durchgeführt. Zellwachstum und die Zellernte. Erweitern des validierten LAP-markierten Zelllinie für die TAP Isolierung von Proteinkomplexen durch kontinuierlich Passagierung alle HEK293 – Zellen in größeren Platten und / oder Rollflaschen in -tet DMEM / F12 – Medium bei 37 ° C und 5% CO 2. Für Tet / Dox induzierbare Zelllinien induzieren für 10-15 h bei einer Konzentration von 0,2 ug / ml Tet / Dox, wenn die Zellen erreichen ~ 70% Konfluenz vor Harg Zellen. HINWEIS: Die Konzentration und die Induktionszeit sollte für jedes Protein eine Titration von 0,1-1 ug / ml Tet / Dox für 10-15 h bestimmt werden empfohlen. Ernten Sie die Zellen durch Rühren oder Trypsinierung und Pellet-Zellen bei 875 × g für 5 bis 10 min. Kupplung Anti-GFP Antikörper an Protein A Beads Verwenden Sie 40 ug Antikörper für die Immunpräzipitation von einem aus einer 0,5 ml Zellpellet hergestellt Lysat, Hämatokrit (PCV). HINWEIS: Die Menge des Antikörpers auf die Abundanz abhängig von der LAP-tagged Protein unter anderem benötigt wird, und wird die Optimierung erfordern. Eine Titration von 10 bis 40 & mgr; g empfohlen. Äquilibrieren 160 ul gepacktes Volumen (PV) Protein A-Kügelchen in PBST (PBS + 0,1% Tween-20) in einem 1,5 ml Röhrchen. Wasche 3mal mit je 1 ml PBST. HINWEIS: Alle Waschungen hierin durchgeführt werden, indem die Kügelchen bei 5,000 xg Zentrifugation für 10 sec. Resuspendieren Perlen in 500 ul PBST und fügen Sie 80 ug Affinität-purified Kaninchen-Anti-GFP-Antikörper in jedes Röhrchen 160 & mgr; l Kügelchen. Mischung für 1 Stunde bei Raumtemperatur (RT). Waschen Sie Perlen 2 mal mit 1 ml PBST. Dann waschen beads 2 mal mit 1 ml 0,2 M Natriumborat, pH 9 (20 ml 0,2 M Natriumborat + 15 ml 0,2 M Borsäure). Nach dem letzten Waschen, fügen 900 ul der 0,2 M Natriumborat, pH 9, um das Endvolumen auf 1 ml zu bringen. Füge 100 & mgr; l von 220 mM Dimethylpimelimidat (DMP) in einer Endkonzentration von 20 mM. Drehen Sie die Rohre vorsichtig bei RT für 30 min. Für 220 mM DMP resuspendieren Inhalt einer 50 mg-Flasche in 877 ul 0,2 M Natriumborat, pH 9 und sofort auf die Beadsuspension hinzuzufügen. Nach Inkubation mit DMP, wasche beads 1 Mal mit 1 ml 0,2 M Ethanolamin, 0.2 M NaCl, pH 8,5, die restlichen Vernetzer zu inaktivieren. Resuspendieren Kügelchen in 1 ml des gleichen Puffers und drehen 1 h bei RT. Pellet Perlen und resuspendieren Perlen in 500 ul 0,2 M Ethanolamin, 0,2 M NaCl pH 8,5. Perlen sind stabil für several Monate bei 4 ° C. Herstellung der Puffer für Zellyse und Komplexe Reinigung Bereiten Sie LAPX Puffer (wobei X die gewünschte Salzkonzentration [mM KCl] des LAP-Puffer, 300 mM für Zell-Lyse, 200 mM für die meisten Perle wäscht und 100 mM zum Waschen Perlen vor Proteine ​​eluting) durch einen pH-Wert 7,4 Lösung machen enthaltend 50 mM 4- (2-Hydroxyethyl) -1-piperazinethansulfonsäure (HEPES), X mM KCl, 1 mM Ethylenglykol – tetraessigsäure (EGTA), 1 mM MgCl 2 und 10% Glycerin. HINWEIS: Die Komponenten dieses Puffers werden verwendet, um die Umgebung in lebenden Zellen zu approximieren. HEPES als Puffer im pH-Wut von 7,2-8,2 verwendet. KCl ist ein Salz verwendet, um die Ionenstärke des Puffers zu halten. EGTA ist ein chelatbildendes Mittel, das Calciumionen bindet die Mengen an Calcium gegenüber Magnesium zu reduzieren. Glycerol und MgCl 2 verwendet , um die Stabilität von Proteinen zu verbessern. Bereiten Sie LAPX N Puffer durch Zugabe von 0,05% Nonylphenol phenoxypolyethoxylethanol zum LAPX Puffer. HINWEIS: Nonyl phenoxypolyethoxylethanol ist ein mildes Detergens, das Proteine ​​solubilisiert, aber bewahrt Protein-Protein-Wechselwirkungen, wodurch eine höhere Konzentration während des Extraktionsverfahrens verwendet wird, und es wird dann während des Bindungs- und Waschschritte verringert. Herstellung von Zelllysaten Resuspendieren 500 ul PCV in 2,5 ml LAP300 mit 0,5 mM Dithiothreitol (DTT) und Protease-Inhibitoren. In 90 ul 10% Nonylphenol phenoxypolyethoxylethanol (0,3% final) und mischen durch Umdrehen. Auf Eis für 10 min. Zentrifuge bei 21.000 g für 10 min. Sammeln Sie diese niedriger Geschwindigkeit Überstand (LSS). Nehmen Sie eine 10 ul Probe des LSS für Gel-Analyse. LSS übertragen auf eine TLA100.3 Rohr und Spin bei 100.000 × g für 1 Stunde bei 4 ° C. Sammeln Sie diese Hochgeschwindigkeitsüberstand (HSS), in einem Rohr und auf Eis. Nehmen Sie eine 10 ul Probe des HSS für Gel-Analyse. HINWEIS: Vermeiden Sie die oberste Lipidschicht eine Einnahmed die unterste Zelltrümmer Schicht. Die Lipidschicht sollte vor dem Sammeln der HSS durch Vakuum abgesaugt werden. Erste Affinity-Capture: Die Bindung an Anti-GFP-Beads Pre-eluieren Antikörper gekoppelten Kügelchen (Verwendung 160 & mgr; l Kügelchen pro 0,5 ml Zellpellet (PCV)) , indem sie 3 – mal mit 1 ml Elutionspuffer [3,5 M MgCl 2 mit 20 mM Tris, pH 7,4] Waschen von ungekoppelten loszuwerden Antikörper und reduzieren Hintergrund. Haben schnell. Sie nicht für eine lange Zeit Perlen in hohen Salz verlassen. Waschen Perlen 3 – mal mit 1 ml LAP200 N. Mischungs HSS mit Antikörper-Perlen für 1 h Extrakts bei 4 ° C. Zentrifuge bei 21.000 g für 10 min. Nehmen Sie eine 10 ul – Probe des Überstandes ( das heißt die Strömung durch (FT)) für Gelanalyse. Waschen Perlen 3mal mit 1 ml LAP200 N mit 0,5 mM DTT und Proteaseinhibitoren. Waschen beads 2 mal (jeweils 5 min) mit 1 ml LAP200 N mit 0,5 mM DTT und Proteaseinhibitoren. Waschen Sie schnell 2 times mit 1 ml LAP200 N mit 0,5 mM DTT und keine Protease – Inhibitoren vor der Tabakätzvirus (TEV) Protease – Zugabe. TEV-Spaltung Verdünne 10 & mgr; g TEV Protease in 1 ml N LAP200 und drehen Röhrchen bei 4 ° C über Nacht. HINWEIS: Dieser Schritt kann für jede LAP-tagged Protein optimiert werden, in wenigen Stunden abgeschlossen werden, indem die Konzentration der TEV-Protease Einstellung, die die Erhaltung der LAP-tagged Protein-Komplexe unterstützen kann. Pellet Perlen und Überstand in ein frisches Röhrchen. Spülen Sie Perlen zweimal mit 160 & mgr; l LAP200 N mit 0,5 mM DTT und Proteaseinhibitoren (triple – Konzentration) restliche Protein zu entfernen. Nehmen Sie eine 10 ul-Probe des Überstandes für Gel-Analyse. Zweite Affinity Aufnahme: Die Bindung an S-Protein-Agarose Waschen 1 Röhrchen von 80 & mgr; l S – Protein – Agarose – Aufschlämmung (40 & mgr; l gepackte Harz) 3 – mal mit 1 ml N LAP200. HINWEIS: S Protein Bindung an den S-tag eine aktive RNase und einer alternativen zweiten Epitopmarkierung rekonstituieren sollte für RNA enthaltende Proteinkomplexe angesehen werden. In TEV eluiert Überstand S-Protein-Agarose-Perlen und Rock für 3 Stunden bei 4 ° C. Pellet Perlen und waschen 3 Mal mit 1 ml LAP200 N mit 0,5 mM DTT und Proteaseinhibitoren. Waschen Sie Perlen 2 mal mit 1 ml LAP100. Proteinelution Eluieren Proteinen aus S-Protein-Agarose durch 50 ul 4x Laemmli-Probenpuffer und Wärme Zugabe für 10 min bei 97 ° C. HINWEIS: Die Proteine können auch aus den Kügelchen mit Elutionspuffer (3,5 M MgCl 2 mit 20 mM Tris, pH 7,4) eluiert werden. 4. Identifizieren Proteine ​​durch Massenspektrometrie-Analyse Interacting Testen der Qualität der Reinigung durch die gesammelten Proben durch Natriumdodecylsulfat-Polyacrylamid-Gelelektrophorese (SDS-PAGE) analysiert, Silberfärbung des Gels (siehe <strong> Materials Table) und der Eluate Immunoblotting mit anti-GFP – Antikörper Sondieren , um sicherzustellen , daß die LAP-tagged Reinigung 16 gearbeitet, siehe Figur 4. Zur Identifizierung von stöchiometrischen und unterstöchiometrischen Co-Reinigung von Spezies, um die endgültige Elution Probe und trennen es durch SDS-PAGE. Stain das Gel mit einem Massenspektrometrie kompatibel Protein Fleck. Auszuschneiden die prominentesten Bands und den Raum zwischen ihnen von dem Gel und verarbeiten sie für die Analyse durch Massenspektrometrie getrennt 16. HINWEIS: Es gibt zahlreiche Ansätze für die abschließende Reinigung Eluate abgetrennt und für die Massenspektrometrie 5 vorbereitet. Zum Beispiel LAP-gereinigten Komplexe können durch Verwendung von Hochsalz (3,5 M MgCl 2) und der gesamten Proteinpopulation aus S-Protein – Kügelchen eluiert werden en masse durch Massenspektrometrie 17 analysiert werden kann. Alternativ können endgültige Eluate für 1 mm durch SDS-PAGE und einer einzigen 1 mm Band kann e getrennt werden seinxcised und analysiert. Dies löscht die komplexe Mischung aus jeder Perlen oder Partikeln, die mit der Analyse stören.

Representative Results

To highlight the utility of this system, the open reading frame (ORF) of the Tau microtubule binding protein was cloned into the shuttle vector by amplifying the Tau ORF with primers containing attB1 and attB2 sites (Table 1) and incubating the PCR products with the shuttle vector and a recombinase that mediates the insertion of the PCR products into the shuttle vector. The reaction products were used to transform DH5α bacteria13 and plasmid DNA from Kanamycin resistant colonies was sequenced to ensure Tau insertion. A sequence validated shuttle-Tau vector was then used to transfer the Tau ORF into the pGLAP1 vector, which fused Tau in frame with the LAP (EGFP-TEV-S-Protein) tag, by incubating the shuttle-Tau vector with the pGLAP1 vector and the recombinase that mediates the transfer of the ORF from the shuttle vector to pGLAP1. The reaction products were used to transform DH5α bacteria13 and plasmid DNA from Ampicillin resistant colonies was sequenced to ensure that the LAP-Tau fusion was in frame. Sequence validated pGLAP1-LAP-Tau was then co-transfected with a vector that expresses the flippase recombination enzyme into HEK293 cells that contained a single flippase recognition target (FRT) site within their genome, which is the site of integration for LAP-tagged genes14. This cell line also expressed the TetR that binds to Tet operators upstream of the LAP-tagged genes and silences their expression in the absence of Tet/Dox. Stable integrants were selected with -Tet DMEM/F12 media with 100 µg/ml Hygromycin for 5 days. Individual Hygromycin resistant cell foci were harvested by adding 20 µl of trypsin on top and pipetting up and down 2 times. Cells were placed in a 24 well plate and expanded by continual growth in -Tet DMEM/F12 media. To verify that the Hygromycin resistant cells were capable of expressing LAP-Tau, HEK293 LAP-Tau cells were induced with 0.1 µg/ml Dox for 15 hr and protein extracts were prepared from non-induced and Dox-induced cells. These extracts were separated by SDS-PAGE, transferred to a PVDF membrane, and immunoblotted for GFP and Tubulin as loading control. As seen in Figure 4A, LAP-Tau (visualized with anti-GFP antibodies) was only expressed in the presence of Dox. To validate that LAP-Tau was properly localized to the mitotic microtubule spindle during mitosis, as had been previously shown for endogenous Tau18, HEK293 LAP-Tau cells were induced with 0.1 µg/ml Dox for 15 hr and cells were fixed with 4% paraformaldehyde and co-stained for DNA (Hoechst 33342) and microtubules (anti-Tubulin antibodies). Consistently, LAP-Tau was localized to the mitotic spindle during metaphase of mitosis (Figure 4B). To verify that LAP-Tau and its interacting proteins could be purified with this system, HEK293 LAP-Tau cells were grown in roller bottles to ~70% confluency, induced with 0.1 µg/ml Dox for 15 hr, harvested by agitation, lysed with LAP300 buffer, and LAP-Tau was purified using the above protocol. Eluates from the LAP-Tau purification were resolved by SDS-PAGE and the gel was silver stained. Figure 4C shows the LAP-Tau purification, marked with an asterisk is LAP-Tau and several other bands indicative of Tau interacting proteins can be seen. Figure 1: Overview of the Generation of LAP-tagged Inducible Stable Cell Lines for any Protein of Interest. The open reading frame (ORF) of genes of interest are amplified with attB1 and attB2 sites flanking the 5' and 3' end sequences, respectively (primer sequences are given in Table 1) and cloned into the shuttle vector. Sequence verified shuttle vectors with the gene of interest are then used to transfer the gene of interest into the pGLAP1 vector. The sequence verified pGLAP1 vector with the gene of interest is then co-transfected with the vector containing the flippase recombinase into the desired cell line that contains a single flippase recognition target (FRT) site within their genome, which is the site of integration for LAP-tagged genes. These cell lines also express the Tet repressor (TetR) that binds to Tet operators (TetO2) upstream of the LAP-tagged genes and silences their expression in the absence of Tet/Dox. The LAP-tagged gene of interest is then recombined into the FRT site and stable integrants are selected with Hygromycin. Please click here to view a larger version of this figure. Figure 2: Overview of the Applications for LAP-tagged Stable Cell Lines. LAP-tagged inducible stable cell lines are induced to express the LAP-tagged protein of interest by Dox addition and can be synchronized at various stages of the cell cycle or can be stimulated with chemicals or ligands to activate any desired signaling pathway. The subcellular localization of the LAP-tagged protein of interest can be analyzed by live cell or fixed cell imaging. LAP-tagged proteins can also be tandem affinity purified and their interacting proteins can be identified by liquid chromatography tandem mass spectrometry (LC-MS/MS). Finally, Cytoscape can be used to generate a protein-protein interaction network of the bait protein. Dox indicates Doxycycline, IP indicates immunoprecipitate, EGFP indicates enhanced green fluorescent protein, Tev indicates TEV protease cleavage site, and S indicates S-tag. Please click here to view a larger version of this figure. Figure 3: Overview of LAP-tagged Protein Expression, Purification and Preparation for Mass Spectrometry. The protocol has 9 steps: 1) growth and induction of LAP-tagged protein expression, 2) cell harvesting and lysis, 3) the preparation of lysates, 4) the binding of lysates to anti-GFP beads, 5) TEV protease cleavage of the GFP-tag, 6) the binding of lysates to S-protein beads, 7) the elution of the bait protein and interacting proteins, and 8-9) the preparation of samples for mass spectrometry-based proteomic analyses. Please click here to view a larger version of this figure. Figure 4: Verification of LAP-Tau expression. (A) Western blot (WB) analysis of protein samples from non-induced and Dox induced LAP-Tau HEK293 cells probed with anti-GFP and anti-Tubulin antibodies to detect the LAP-tagged Tau protein and the Tubulin loading control, respectively. Note that LAP-Tau is only expressed when the cells are induced with Dox. (B) Mitotic cells expressing LAP-Tau were fixed and co-stained for DNA (Hoechst 33342) and Tubulin (Tub) with anti-tubulin antibodies and the subcellular localization of LAP-tau was analyzed by fluorescence microcopy. Note that LAP-Tau localizes to the mitotic spindle and spindle poles during mitosis. (C) Silver stained gel of the LAP-Tau purification. MW indicates molecular weight, CL indicates cleared lysates, and E indicates final eluates. Samples were run on a 4-20% SDS-PAGE and the gel was silver stained to visualize the purified proteins. Note that a band corresponding to LAP-Tau is marked with an asterisk and several other bands corresponding to co-purifying proteins can be seen. Please click here to view a larger version of this figure. N-terminal fusion Forward 5'-GGGGACAAGT TTGTACAAAAAAGCAGGCTTCATG-(>18gsn)-3’ Reverse 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTT TTATCA-(>18gsn)-3’ C-terminal fusion Forward 5'-GGGGACAAGTTTGTACAAAAAAGCAGGCTTCACC-(>18gsn)-3’ Reverse 5'-GGGGACCACTTTGTACAAGAAAGCTGGGTG-(>18gsn)-3’ Table 1: Forward and Reverse Primers for Amplifying ORFs or Interest for Insertion into the Shuttle Vector. The attB sites are highlighted in bold letters, gsn denotes that more than 18 gene specific nucleotides are added to the primer. Step Temperature Time Initial denaturation 94 °C 2 min PCR Amplification Cycles (35) Denature 94 °C 30 sec Anneal 55 °C (depending on the primer Tm) 30 sec Extend 72 °C 1 min/kb Hold 4 °C indefinitely Table 2: PCR Conditions for Amplification of the ORFs of Interest. Vector Forward Sequencing Primer Reverse Sequencing Primer Shuttle Vector 5’-TGTAAAACGACGGCCAGT-3’ 5’-CAGGAAACAGCTATGAC-3’ Table 3: Forward and Reverse Sequencing Primers for the Shuttle Vector. ID Structure Parental  Promoter Bac Res Mam Res Tet reg? pGLAP1 N-term EGFP-TEV-S peptide pcDNA5/FRT/TO CMV Amp Hyg Yes pGLAP2 N-term Flag-TEV-S peptide pcDNA5/FRT/TO CMV Amp Hyg Yes pGLAP3 N-term EGFP-TEV-S peptide; C-term V5 pEF5/FRT-V5 EF1a Amp Hyg No pGLAP4 N-term Flag-TEV-S peptide; ; C-term V5 pEF5/FRT-V5 EF1a Amp Hyg No pGLAP5 C-term S peptide-PreProt x2-EGFP pEF5/FRT-V5 EF1a Amp Hyg No Table 4: List of Available LAP/TAP Vectors with Variable Promoters, Epitope-tags, and Dox Inducible Expression Capabilities for N or C-terminal Protein Tagging. Vectors are commercially available. Bac Res indicates bacterial resistance marker, Mam Res indicates mammalian cell resistance marker, Tet reg? indicates whether expression is Tet/Dox regulatable. Vector Forward Sequencing Primer Reverse Sequencing Primer pGLAP1 5’-ATCACTCTCGGCATGGACGAGCTGTACAAG-3’ 5’-TGGCTGGCAACTAGAAGGCACAGTCGAGGC-3’ pGLAP2 5’-CGAACGCCAGCACATGGACAGGG-3’ 5’-TGGCTGGCAACTAGAAGGCACAGTCGAGGC-3’ pGLAP3 5’-AGAAACCGCTGCTGCTAA-3’ 5’-TAGAAGGCACAGTCGAGG-3’ pGLAP4 5’-AGACCCAAGCTGGCTAGGTAAGC-3’ 5’-TAGAAGGCACAGTCGAGG-3’ pGLAP5 5’-CGTAATACGACTCACTATAG-3’ 5’-TCCAGGGTCAAGGAAGGCACGG-3’ Table 5: Forward and Reverse Sequencing Primers for pGLAP Vectors.

Discussion

The outlined protocol describes the cloning of genes of interest into the LAP-tagging vector, the generation of inducible LAP-tagged stable cell lines, and the purification of LAP-tagged protein complexes for proteomic analyses. With respect to other LAP/TAP-tagging approaches, this protocol has been streamlined to be compatible with high-throughput approaches to map protein localization and protein-protein interactions within any cellular pathway. This approach has been widely applied to the functional characterization of proteins critical for cell cycle progression, mitotic spindle assembly, spindle pole homeostasis, and ciliogenesis to name a few and has aided the understanding of how misregulation of these proteins can lead to human diseases15,16,19,20. For example, our group recently utilized this system to define the function and regulation of the STARD9 mitotic kinesin (a candidate cancer target) in spindle assembly15,21, to define a new molecular link between the Tctex1d2 dynein light chain and short rib polydactyly syndromes (SRPS)19, and to define a new molecular link to understanding how mutation of the Mid2 ubiquitin ligase can lead to X-linked intellectual disabilities16. Other laboratories have also successfully applied this method, including one that determined that Tctn1, a regulator of mouse Hedgehog signaling, was a part of a ciliopathy-associated protein complex that regulated ciliary membrane composition and ciliogenesis in a tissue-dependent manner22,23. Therefore, this protocol can be broadly applied to the dissection of any cellular pathway.

A critical step in this protocol is the selection of LAP-tagged stable cell lines that are Hygromycin resistant. Special care should be taken to ensure that all cells in the control plate are dead before selecting foci in the experimental plate for amplification. Hygromycin can also be added during routine cell culturing of LAP-tagged stable cell lines to further ensure that all cells maintain the LAP-tagged gene of interest at the FRT site. We caution that not all LAP-tagged proteins will be functional and that it is important to have assays in place that can be used to test protein function. Examples of assays used to test protein function include the rescue of siRNA-induced phenotypes and in vitro activity assays. To address any potential problems with the addition of a large LAP-tag, we have previously generated TAP-tag vectors compatible with this system that contain smaller tags, like FLAG, which are less likely to inhibit the function and localization of the protein of interest4. In addition, LAP-tagging vectors exist for generating C-terminal LAP-tagged proteins or C-terminal TAP-tagged proteins that are compatible with this system, which can be used in cases where a LAP/TAP tag is not tolerated at the N-terminus of a protein. Additionally, the salt and detergent concentrations of the purification buffers (LAPXN) can be modified to increase or decrease the purification stringency if none or too many interactions are observed. Similarly, the tandem affinity purification procedure is more stringent than single purification procedures and weak interactors may be lost, thus a single purification scheme can be used when few or no interactors are identified.

It is important to note that other GFP epitope tagging approaches exist that allow large scale GFP protein tagging for protein localization and purification studies24,25. These include the BAC TransgenOmics approach that utilizes bacterial artificial chromosomes to express GFP-tagged genes of interest from their native environment that contains all the regulatory elements, which mimics endogenous gene expression24. More recently, CAS9/single-guided RNA (sgRNA) ribonucleoprotein complexes (RNPs) have been used to endogenously tag genes of interest with a split-GFP system that allows the expression of GFP-tagged genes from their endogenous genomic loci25. Although both of these approaches enable the expression of tagged proteins under endogenous conditions, compared to the LAP-tagging protocol described here, they do not allow for inducible and tunable expression of the tagged genes of interest. Additionally, they have yet to be applied to tandem epitope tagging for TAP. It is also important to note that other tagging systems can also be modified to become compatible with the system described here for generating inducible epitope-tagged stable cell lines. For example, proximity-dependent biotin identification (BioID) has garnered considerable attention due to its ability to define spatial and temporal relationships among interacting proteins26. This technique exploits protein fusions to a promiscuous strain of the Escherichia coli biotin ligase BirA, which biotinylates any protein within a ~10 nm radius of the enzyme. The biotinylated proteins are then affinity purified using biotin-affinity capture and analyzed for composition by mass spectrometry. BirA will biotinylate any protein in close proximity, even transiently, which makes it especially suited for detecting weaker interacting partners within a complex27. Additionally, the purification scheme does not necessitate that endogenous protein-protein interactions remain intact and can be carried out under denaturing conditions, thus reducing the rate of false positives. Within our current protocol, the substitution of the pGLAP1 vector by a BirA-tagging vector could transform this system from identifying protein-protein interactions based on affinity to detecting them based on proximity. Such a system would be highly advantageous for detecting transient protein interactions as is the case between many enzyme-substrate interactions and for mapping the spatiotemporal protein-protein interactions within defined structures as has been carried out for the centrosome and cilia26,28.

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was supported by a National Science Foundation Grant NSF-MCB1243645 (JZT), any opinions, findings, and conclusions or recommendations expressed in this material are those of the authors and do not necessarily reflect the views of the National Science Foundation. The funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Materials

Flp-In T-REx Core Kit Invitrogen K6500-01 Kit for generating cell lines that contain an FRT site and TrtR expression
PETG, 5X Nunc, Inc.  73520-734 Roller bottle for growing cells
PETG, 2.5X Nunc, Inc.  73520-420 Roller bottle for growing cells
Cell stackers Corning CellSTACK 3271 Cell stacker for growing cells
500 mL conical centrifuge tubes Corning  431123 Tubes for harvesting cells
Anti-GFP antibody Invitrogen A11122 Rabbit anti GFP antibody
Affiprep Protein A beads Biorad 156-0006 Used as a matrix for conjugating anti-GFP antibodies
Dimethylpimelimidate (DMP) ThermoFisher Scientific 21667 Used for conjugating anti-GFP antibodies to Protein A beads
TLA100.3 tubes Beckman 349622 Tubes for centrifuging protein lysates during the clearing step
TEV protease Invitrogen 12575-015 Used for cleaving the GFP tag off of N-terminal LAP-tagged proteins
Precession Protease GE Healthcare 27-0843-01 Used for cleaving the GFP tag off of C-terminal LAP-tagged proteins
S-protein agarose Novagen 69704 Used as a second affinity matrix during the purification of LAP-tagged protein complexes
QIAquick DNA gel extraction kit Qiagen 28704/28706 For use in purifying PCR products from an agarose gel
BP clonase II Invitrogen 11789020 Used for cloning ORF PCR products into the pDONR221 shuttle vector
LR clonase II Invitrogen 11791020 Used for cloning the ORF of the gene of interest into the pGLAP1 LAP-tagging vector
ccdB Survival 2 T1R E. coli Invitrogen A10460 Used for propgating shuttle vectors and pGLAP empty vectors
Fugene 6 Promega E2691 Transfection reagent for transfecting vectors into human cells
Tetracycline Invitrogen Q100-19 Drug for inducing Dox/Tet inducible protein expression 
Doxycycline Clontech 631311 Drug for inducing Dox/Tet inducible protein expression 
Hygromycin B Invitrogen 10687010 Drug for selecting stable LAP-tagged integrants
Kanamycin Corning 61-176-RG Drug for selecting Kanamycin resistant bacterial colonies
Ampicillin Fisher BP1760-5 Drug for selecting Ampicillin resistant bacterial colonies
4-20% Tris Glycine SDS-PAGE gels Biorad 4561094 Used for separating protein samples and final LAP-tag purification eluates
Silver Stain Plus Kit Biorad 1610449 Used for silver staining the eluates of LAP-tagged pufications and samples collected throughout the purification process 
Coomassie Blue stain Invitrogen LC6060 Used for staining SDS-PAGE gels to visulize LAP-tagged purifications and cutting out protein bands, mass spectrometry compatible
Shuttle vector pDONR221 Invitrogen 12536017 Shuttle vector for cloning the ORFs of genes of interest
Flippase expressing vector pOG44 Invitrogen V600520 Vector that expresses the Flippase recombinase for integrating LAP-tagged genes into the genome of FRT site containing cell lines
Platinum Taq DNA Polymerase ThermoFisher Scientific 10966018 Used for PCR amplification of the ORFs of genes of interest
4X Laemmli sample buffer Biorad 1610747 Sample buffer for eluting purified LAP-tagged protein complexes from the bead matrix
Luria broth (LB) media Fisher BP9723-2 Used for growing DH5α bacteria
DNA miniprep kit Promega A1222 Used for making DNA plasmid minipreps
DMEM/F12 media Hyclone SH30023.01 For growing Hek293 human cells
FBS lacking Tet Altanta Biologicals S10350 Used for making -Tet DMEM/F12 media for generating and growing inducible LAP-tagged stable cell lines
Trypsin Hyclone SH30042.01 For lifting Hek293 cell foci from plates
Protease inhibitor tablets Roche 11836170001 Used for making protocol buffers, EDTA-free
10% nonyl phenoxypolyethoxylethanol  Roche 11332473001 Used for making protocol buffers
PBS Corning 21-040-CM Used for making protocol buffers
Tween-20 Fisher BP337-500 Used for making protocol buffers
Sodium Borate Fisher S249-500 Used for making protocol buffers
Boric Acid Fisher A78-500 Used for making protocol buffers
Ethanolamine Calbiochem 34115 Used for making protocol buffers
NaCl Fisher P217-3 Used for making protocol buffers
KCl Fisher BP358-10 Used for making protocol buffers
Dithiothreitol (DTT) Fisher BP172-25 Used for making protocol buffers
MgCl2 Fisher M33-500 Used for making protocol buffers
Tris base Fisher BP152-5 Used for making protocol buffers

References

  1. Rigaut, G., et al. A generic protein purification method for protein complex characterization and proteome exploration. Nat Biotechnol. 17, 1030-1032 (1999).
  2. Puig, O., et al. The tandem affinity purification (TAP) method: a general procedure of protein complex purification. Methods. 24, 218-229 (2001).
  3. Cheeseman, I. M., Desai, A. A combined approach for the localization and tandem affinity purification of protein complexes from metazoans. Sci STKE. , (2005).
  4. Torres, J. Z., Miller, J. J., Jackson, P. K. High-throughput generation of tagged stable cell lines for proteomic analysis. Proteomics. 9, 2888-2891 (2009).
  5. LaCava, J., et al. Affinity proteomics to study endogenous protein complexes: pointers, pitfalls, preferences and perspectives. Biotechniques. 58, 103-119 (2015).
  6. Landy, A. Dynamic, structural, and regulatory aspects of lambda site-specific recombination. Annu Rev Biochem. 58, 913-949 (1989).
  7. Hartley, J. L., Temple, G. F., Brasch, M. A. DNA cloning using in vitro site-specific recombination. Genome Res. 10, 1788-1795 (2000).
  8. ORFeome Collaboration. The ORFeome Collaboration: a genome-scale human ORF-clone resource. Nat Methods. 13, 191-192 (2016).
  9. Brasch, M. A., Hartley, J. L., Vidal, M. ORFeome cloning and systems biology: standardized mass production of the parts from the parts-list. Genome Res. 14, 2001-2009 (2004).
  10. Lamesch, P., et al. hORFeome v3.1: a resource of human open reading frames representing over 10,000 human genes. Genomics. 89, 307-315 (2007).
  11. Rual, J. F., et al. Human ORFeome version 1.1: a platform for reverse proteomics. Genome Res. 14, 2128-2135 (2004).
  12. Fiering, S., Kim, C. G., Epner, E. M., Groudine, M. An "in-out" strategy using gene targeting and FLP recombinase for the functional dissection of complex DNA regulatory elements: analysis of the beta-globin locus control region. Proc Natl Acad Sci U S A. 90, 8469-8473 (1993).
  13. Sambrook, J., Fritsch, E. F., Maniatis, T. . Molecular cloning : a laboratory manual. , (1989).
  14. Uyttersprot, N., Costagliola, S., Miot, F. A new tool for efficient transfection of dog and human thyrocytes in primary culture. Mol Cell Endocrinol. 142, 35-39 (1998).
  15. Senese, S., et al. A unique insertion in STARD9’s motor domain regulates its stability. Mol Biol Cell. 26, 440-452 (2015).
  16. Gholkar, A. A., et al. The X-Linked-Intellectual-Disability-Associated Ubiquitin Ligase Mid2 Interacts with Astrin and Regulates Astrin Levels to Promote Cell Division. Cell Rep. 14, 180-188 (2016).
  17. Graumann, J., et al. Applicability of tandem affinity purification MudPIT to pathway proteomics in yeast. Mol Cell Proteomics. 3, 226-237 (2004).
  18. Connolly, J. A., Kalnins, V. I., Cleveland, D. W., Kirschner, M. W. Immunoflourescent staining of cytoplasmic and spindle microtubules in mouse fibroblasts with antibody to tau protein. Proc Natl Acad Sci U S A. 74, 2437-2440 (1977).
  19. Gholkar, A. A., et al. Tctex1d2 associates with short-rib polydactyly syndrome proteins and is required for ciliogenesis. Cell Cycle. 14, 1116-1125 (2015).
  20. Cheung, K., et al. Proteomic Analysis of the Mammalian Katanin Family of Microtubule-severing Enzymes Defines Katanin p80 subunit B-like 1 (KATNBL1) as a Regulator of Mammalian Katanin Microtubule-severing. Mol Cell Proteomics. 15, 1658-1669 (2016).
  21. Torres, J. Z., et al. The STARD9/Kif16a Kinesin Associates with Mitotic Microtubules and Regulates Spindle Pole Assembly. Cell. 147, 1309-1323 (2011).
  22. Garcia-Gonzalo, F. R., et al. A transition zone complex regulates mammalian ciliogenesis and ciliary membrane composition. Nat Genet. 43, 776-784 (2011).
  23. Chih, B., et al. A ciliopathy complex at the transition zone protects the cilia as a privileged membrane domain. Nat Cell Biol. 14, 61-72 (2012).
  24. Leonetti, M. D., Sekine, S., Kamiyama, D., Weissman, J. S., Huang, B. A scalable strategy for high-throughput GFP tagging of endogenous human proteins. Proc Natl Acad Sci U S A. 113, E3501-E3508 (2016).
  25. Poser, I., et al. BAC TransgeneOmics: a high-throughput method for exploration of protein function in mammals. Nat Methods. 5, 409-415 (2008).
  26. Firat-Karalar, E. N., Stearns, T. Probing mammalian centrosome structure using BioID proximity-dependent biotinylation. Methods Cell Biol. 129, 153-170 (2015).
  27. Roux, K. J., Kim, D. I., Burke, B. BioID: a screen for protein-protein interactions. Curr Protoc Protein Sci. 74, (2013).
  28. Gupta, G. D., et al. A Dynamic Protein Interaction Landscape of the Human Centrosome-Cilium Interface. Cell. 163, 1484-1499 (2015).
check_url/kr/54870?article_type=t

Play Video

Cite This Article
Bradley, M., Ramirez, I., Cheung, K., Gholkar, A. A., Torres, J. Z. Inducible LAP-tagged Stable Cell Lines for Investigating Protein Function, Spatiotemporal Localization and Protein Interaction Networks. J. Vis. Exp. (118), e54870, doi:10.3791/54870 (2016).

View Video