Summary

分流手术,右心导管,血管形态计量学在大鼠模型中的流量引起的肺动脉高压

Published: February 11, 2017
doi:

Summary

This protocol describes a surgical procedure to create a model for flow-induced pulmonary arterial hypertension (PAH) in rats and the procedures to analyze the principle hemodynamic and histological end-points in this model.

Abstract

In this protocol, PAH is induced by combining a 60 mg/kg monocrotalin (MCT) injection with increased pulmonary blood flow through an aorto-caval shunt (MCT+Flow). The shunt is created by inserting an 18-G needle from the abdominal aorta into the adjacent caval vein. Increased pulmonary flow has been demonstrated as an essential trigger for a severe form of PAH with distinct phases of disease progression, characterized by early medial hypertrophy followed by neointimal lesions and the progressive occlusion of the small pulmonary vessels. To measure the right heart and pulmonary hemodynamics in this model, right heart catheterization is performed by inserting a rigid cannula containing a flexible ball-tip catheter via the right jugular vein into the right ventricle. The catheter is then advanced into the main and the more distal pulmonary arteries. The histopathology of the pulmonary vasculature is assessed qualitatively, by scoring the pre- and intra-acinar vessels on the degree of muscularization and the presence of a neointima, and quantitatively, by measuring the wall thickness, the wall-lumen ratios, and the occlusion score.

Introduction

该方法的目标是创造在大鼠为严重,流动引起的肺动脉高压可再现模型,并测量它的原理的血液动力学和组织病理学终点。

肺动脉高压(PAH)是一种临床综合征,它包括肺血管阻力逐步增加,导致右心室衰竭而死亡。内肺动脉高血压疾病(PH)的上级疾病谱,多环芳烃是最严重的形式,另一种仍然没有治愈1。在PAH的根本动脉的特点是血管重塑的一种典型形式,闭塞血管腔。正常的非肌型容器和内侧容器层的肥大的肌被视为在PAH早期疾病的现象,也见于其他形式的PH 2,并且被认为是可逆3。作为一个PAHdvances,内膜层开始改造,最终形成特征性病变内膜2。内膜型肺血管重构是独家PAH,目前认为是不可逆的4。

由于PAH是一种罕见的疾病,在推进其病理学的理解和新疗法的发展严重依赖动物模型。大鼠monocrotalin(MCT)模型是一个简单的单击模式,已经,并且现在仍然是经常使用的。 MCT是导致伤到肺小动脉和地区炎症5毒素。 60毫克/千克的MCT导致增加的平均肺动脉压(mPAP),肺血管阻力(PVR),以及3后右心室肥大(RVH) – 4周5。该组织形态学无内膜病变5的特点是隔离膜肥厚。该MCT从而大鼠模型表示的PH适度的形式,而不是PAH,虽然它通常呈现为后者。

在与先天性左向右分流(PAH-CHD)相关的PAH的孩子,肺血流增加被认为是内膜病变的7,8,9发展的重要触发。在大鼠中,肺血流增加可由创作腹主动脉和腔静脉,在1990年10首先描述的技术之间的分流来诱导。替代创造增加肺血流量是单侧肺或锁骨下肺动脉吻合术11。这些模型的概念缺点包括由肺,或由于肺血管的医源性损伤致残留肺和自适应通路激活潜在补涨肺动脉吻合术,既混淆增加肺血流量的影响。

当创建主动脉腔静脉分流和肺血流增加是诱发作为第二砸在MCT处理的大鼠,发生特点内膜病变,和多环芳烃是一种严重的和相关的右心室衰竭(RVF)制定3周上升后流程12。 PAH的此模型中的血液动力学级数可以在体内通过超声心动图和右心脏导管插入术进行评估。血管组织形态学,血管壁的厚度,小动脉闭塞程度和参数右心室衰竭形成PAH的体外表征的支柱。

这种方法描述了主动脉腔静脉分流术(AC-分流)详细的手术方案,对心脏导管检查和血管组织形态学定性和定量评估。

Protocol

涉及受试动物的程序已通过荷兰中央委员会的动物实验和动物保健委员会在格罗宁根大学医学中心(NL)。使用了这两个的Wistar和刘易斯大鼠180和300克之间的权。 1.住房和驯化在中央动物设施,房屋大鼠的每笼5组到任后。在7天的适应期后,习惯于老鼠对人类的处理,但不进行任何实验程序。 2.准备和无菌Monocrotalin注射为1毫升60毫克/?…

Representative Results

代表性的结果示于图4中。所提出的研究结果表明MCT +流Lewis大鼠在以下群体的特征:(N = 3),MF8(N = 5),MF14(N = 5),MF28(N = 5)和MF-RVF控制( N = 10)。统计分析采用与Bonferroni校正方差分析单向进行的。 60毫克/千克的MCT和肺血流增加导致收缩期右心室压的平均上升(sRVP)(23±6到56±11毫米汞柱),肺动脉收缩…

Discussion

该方法描述了一种主动脉腔静脉分流的大鼠MCT创建流动引起的肺动脉高压和技术来评估原则血液动力学和表征的PAH和该模型的组织病理学终点预处理的外科手术。

该议定书和故障排除中关键步骤

手术和手术后。在主动脉 – 静脉分流手术,最关键的步骤是主动脉和腔静脉的剥离。括住主动脉和腔静脉应足够解剖膜创造1)的主动脉区域,其中,所述针将被插入…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This study was supported by the Netherlands Cardiovascular Research Initiative, the Dutch Heart Foundation, the Dutch Federation of University Medical Centers, the Netherlands Organization for Health Research and Development, and the Royal Netherlands Academy of Sciences (CVON nr. 2012-08, PHAEDRA, The Sebald fund, Stichting Hartekind).

Materials

Shunt Surgery

Sterile surgical gloves
Duratears Eye ointment Alcon 10380
Chloride-Hexidine
Cotton swabs
Histoacryllic tissue glue B. Braun Medical 1050052
Silkam 5-0 sutures black non-resorbable B. Braun Medical F1134027
Safil 4-0 sutures violet resorbable B. Braun Medical
18 G needle  Luer NN1838R BD tip bent in 45 degrees orifice to the outside
Gauzes 10×10 cm Paul Hartmann 407825
Temgesic Buprenorphine RB Pharmaceuticals 5429 subcutaneous injection
Sodium Chloride 0.9 %
Ventilation mask Rat
Scalple blade
Biemer clamp 18 mm, 5 mm opening  AgnTho 64-562
Heat mat
Kocher Clamp
Shaving machine
Microscope Leica

Right Heart Catheterization

Name Company Catalog Number Comments
Sterile surgical gloves
Eye ointment Duratears
Chloride-Hexidine
Cotton swabs
Gauzes 10×10 cm Paul Hartmann 407825
Silkam 5-0 sutures black non-resorbable B. Braun Medical F1134027
Needle 20 G Luer Tip slightly bent to the inside
Cannula 20 G Luer to introduce catheter, tip pre-formed in 20 degrees
Silastic Catheter 15 cm long 0.5 mm ball 2 mm from tip
Pressure transducer Ailtech
Bedside monitor Cardiocap/5 Datex-Ohmeda
Shaving machine
10mL Syringe
Sodium Chloride 0.9 % for flushing

Vascular Morphology

Name Company Catalog Number Comments
50ml Syringe
4 % Formaldehyde
18 G cannula with tube
Verhoef staining kit Sigma-Aldrich HT254 http://www.sigmaaldrich.com/catalog/product/sigma/ht254?lang=en&region=US
Digital slide scanner Hamamatsu C9600
Image-J
Elastic (Connective Tissue Stain)  Abcam ab150667 http://www.abcam.com/elastic-connective-tissue-stain-ab150667.html
http://www.abcam.com/ps/products/150/ab150667/documents/ab150667-Elastic%20Stain%20Kit%20(website).pdf

References

  1. Hoeper, M. M., Bogaard, H. J., Condliffe, R., et al. Definitions and diagnosis of pulmonary hypertension. J Am Coll Cardiol. 62, D42-D50 (2013).
  2. Stacher, E., Graham, B. B., Hunt, J. M., et al. Modern age pathology of pulmonary arterial hypertension. Am J Respir Crit Care Med. 186 (3), 261-272 (2012).
  3. Levy, M., Maurey, C., Celermajer, D. S., et al. Impaired apoptosis of pulmonary endothelial cells is associated with intimal proliferation and irreversibility of pulmonary hypertension in congenital heart disease. J Am Coll Cardiol. 49 (7), 803-810 (2007).
  4. Sakao, S., Tatsumi, K., Voelkel, N. F. Reversible or irreversible remodeling in pulmonary arterial hypertension. Am J Respir Cell Mol Biol. 43 (6), 629-634 (2010).
  5. Gomez-Arroyo, J. G., Farkas, L., Alhussaini, A. A., et al. The monocrotaline model of pulmonary hypertension in perspective. Am J Physiol Lung Cell Mol Physiol. 302 (4), L363-L369 (2012).
  6. Jones, J. E. Serial noninvasive assessment of progressive pulmonary hypertension in a rat model. Am J Physiol – Heart Circ Physiol. 283 (1), 364-371 (2002).
  7. Hoffman, J. I., Rudolph, A. M., Heymann, M. A. Pulmonary vascular disease with congenital heart lesions: Pathologic features and causes. Circulation. 64 (5), 873-877 (1981).
  8. van Albada, M. E., Berger, R. M. Pulmonary arterial hypertension in congenital cardiac disease–the need for refinement of the evian-venice classification. Cardiol Young. 18 (1), 10-17 (2008).
  9. Dickinson, M. G., Bartelds, B., Borgdorff, M. A., Berger, R. M. The role of disturbed blood flow in the development of pulmonary arterial hypertension: Lessons from preclinical animal models. Am J Physiol Lung Cell Mol Physiol. 305 (1), L1-L14 (2013).
  10. Garcia, R., Diebold, S. Simple, rapid, and effective method of producing aortocaval shunts in the rat. Cardiovasc Res. 24 (5), 430-432 (1990).
  11. Okada, K., Tanaka, Y., Bernstein, M., Zhang, W., Patterson, G. A., Botney, M. D. Pulmonary hemodynamics modify the rat pulmonary artery response to injury. A neointimal model of pulmonary hypertension. Am J Pathol. 151 (4), 1019-1025 (1997).
  12. van Albada, M. E., Schoemaker, R. G., Kemna, M. S., Cromme-Dijkhuis, A. H., van Veghel, R., Berger, R. M. The role of increased pulmonary blood flow in pulmonary arterial hypertension. Eur Respir J. 26 (3), 487-493 (2005).
  13. Brittain, E. Echocardiographic assessment of the right heart in mice. JVis Exp. (e81), (2013).
  14. Dickinson, M. G., Bartelds, B., Molema, G., et al. Egr-1 expression during neointimal development in flow-associated pulmonary hypertension. Am J Pathol. 179 (5), 2199-2209 (2011).
  15. Borgdorff, M. A., Bartelds, B., Dickinson, M. G., Steendijk, P., de Vroomen, M., Berger, R. M. Distinct loading conditions reveal various patterns of right ventricular adaptation. Am J Physiol Heart Circ Physiol. 305 (3), H354-H364 (2013).
  16. Ruiter, G., de Man, F. S., Schalij, I., et al. Reversibility of the monocrotaline pulmonary hypertension rat model. Eur Respir J. 42 (2), 553-556 (2013).
  17. van Albada, M. E., Bartelds, B., Wijnberg, H., et al. Gene expression profile in flow-associated pulmonary arterial hypertension with neointimal lesions. Am J Physiol Lung Cell Mol Physiol. 298 (4), L483-L491 (2010).
  18. Dickinson, M. G., Kowalski, P. S., Bartelds, B., et al. A critical role for egr-1 during vascular remodelling in pulmonary arterial hypertension. Cardiovasc Res. 103 (4), 573-584 (2014).
  19. van der Feen, D. E., Dickinson, M. G., Bartelds, M. G., et al. Egr-1 identifies neointimal remodeling and relates to progression in human pulmonary arterial hypertension. Jheart lung transplant. 35 (4), 481-490 (2016).
  20. Rungatscher, A. Chronic overcirculation-induced pulmonary arterial hypertension in aorto-caval shunt. Microvasc Res. 94, 73-79 (2014).
  21. O’Blenes, S. B., Fischer, S., McIntyre, B., Keshavjee, S., Rabinovitch, M. Hemodynamic unloading leads to regression of pulmonary vascular disease in rats. J Thorac Cardiovasc Surg. 121 (2), 279-289 (2001).
  22. Sakao, S., Taraseviciene-Stewart, L., Lee, J. D., Wood, K., Cool, C. D., Voelkel, N. F. Initial apoptosis is followed by increased proliferation of apoptosis-resistant endothelial cells. FASEB J. 19 (9), 1178-1180 (2005).
  23. Spiekerkoetter, E. FK506 activates BMPR2, rescues endothelial dysfunction, and reverses pulmonary hypertension. J Clin Invest. 123 (8), 3600-3613 (2013).
  24. Nickel, N. P., Spiekerkoetter, E., Gu, M., et al. Elafin reverses pulmonary hypertension via caveolin-1-dependent bone morphogenetic protein signaling. Am J Respir Crit Care Med. 191 (11), 1273-1286 (2015).
  25. Meloche, J., Potus, F., Vaillancourt, M., et al. Bromodomain-containing protein 4: The epigenetic origin of pulmonary arterial hypertension. Circ Res. 117 (6), 525-535 (2015).
  26. Happé, C. M. Pneumonectomy combined with SU5416 induces severe pulmonary hypertension in rats. Am J Physiol Lung Cell Mol Physiol. 310 (11), L1088-L1097 (2016).
  27. Ranchoux, B., Antigny, F., Rucker-Martin, C., et al. Endothelial-to-mesenchymal transition in pulmonary hypertension. Circulation. 131 (11), 1006-1018 (2015).
  28. de Raaf, M. A. SuHx rat model: Partly reversible pulmonary hypertension and progressive intima obstruction. Eur Respy J. 44 (1), 160-168 (2014).
check_url/kr/55065?article_type=t

Play Video

Cite This Article
van der Feen, D. E., Weij, M., Smit-van Oosten, A., Jorna, L. M., Hagdorn, Q. A., Bartelds, B., Berger, R. M. Shunt Surgery, Right Heart Catheterization, and Vascular Morphometry in a Rat Model for Flow-induced Pulmonary Arterial Hypertension. J. Vis. Exp. (120), e55065, doi:10.3791/55065 (2017).

View Video