Summary

测量与建模干燥收缩人类角质层

Published: March 01, 2017
doi:

Summary

本文介绍定量通过测量空间分辨粘附到弹性体基体的圆形组织样品的面内干燥位移动态干燥行为和角质层的机械性能的方法。这种技术可以用于测量化学处理如何不同改变干燥和组织的机械性能。

Abstract

角质层(SC)是最表面的表层。其与外部环境接触装置,该组织层进行既清洁剂,并在环境水分日变化;这两者都可以改变组织中的水含量。在严重的屏障功能障碍或低湿度的环境中的水含量减少可以改变SC刚度和引起干燥应力的积聚。在极端情况下,这些因素可能会导致组织的机械破裂。我们已经建立了量化的SC的干燥时的力学性能动态变化的高通量方法。可以采用这种技术来量化在干燥行为和改变与化妆品的清洁剂和保湿处理的SC的机械性能。这是通过测量在粘附到弹性体基体的圆形的组织样本的空间分辨的面内干燥位移动态变化来实现的。在平面径向位移ACQ干燥期间uired被方位角平均,并装配有基于线性弹性收缩模型的轮廓。在干燥应力和SC弹性模量的动态变化可以被从拟合模型轮廓萃取。

Introduction

最外层的表皮,或角质层(SC)包括由富含脂质的基质1,2包围凝聚力角质细胞的细胞。 SC的组合物和结构的完整性对于维持正确屏障功能3,这将阻止微生物侵入和抗蚀剂既机械力和4损失过多的水是必不可少的。个人护理产品,以维持或降低皮肤屏障功能的能力是极大的兴趣,皮肤保健和化妆品行业5。的个人护理产品的日常应用是已知的,以改变SC 6,7,8的机械性能。例如,包含在化妆品清洁剂的表面活性剂可以导致弹性模量显著增加和积聚干燥应力SC,增加了组织的倾向破解7,9。包含在几乎所有的化妆品的保湿剂的甘油可以软化SC和减少干燥应力8,10,11,减少组织破裂的可能性的积聚。

在这篇文章中详细描述的方法是能够量化动态干燥行为和在控制的环境7个 SC干燥机械性能,8。以前,这种技术已被证明能够阐明关于在动态干燥行为变化和SC组织的力学性能的不同的化妆品产品的效果的。这是通过量化粘附到一个软的弹性体基板的人类SC组织的干燥引起的收缩来实现,用一个简单的嵌合干燥位移收缩模型,然后提取的弹性模量和从拟合轮廓干燥应力。当需要多个SC样品的测试,此方法提供了更快速的替代单轴tensometry,利用显著较少的组织并通过防止蒸发从样品底面提供了更多的生理学相关的干燥。

Protocol

豁免核准(3002-13)使用依照卫生署去识别组织样本和人类服务条例开展调研,45 CFR 46.101(二)(4)获得了批准。全层皮肤从择期手术的好评。在这篇文章中,组织来源是66岁的白人女性的乳房。 1.弹性体覆盖盖玻片的制备在20毫升玻璃小瓶中,用5.893克碱混合0.107克的Sylgard 184固化剂。总混合物的质量是6克与碱固化55剂:1的比例。 用玻璃棒混合以确保均匀后,?…

Representative Results

图1(a)示出了涂覆有荧光珠(第3节)的SC样品的代表性荧光图像。样品的相应的透射光图像在图1(b)覆盖有后在25%RH下16小时干燥形成空间分辨干燥位移的颤动情节由于样品的圆形对称性所示,这些位移可方位角平均。 图1(c)所示的径向(U R,红色实线)和方位角(Uθ,蓝色虚线)位移曲线绘制了无量纲径向位?…

Discussion

在本文中,我们描述了可以用来测量动态干燥行为和人SC的机械性能的技术。以前的研究已经表明,这种技术可用于量化的化妆品清洁剂和保湿剂常用于SC 7,8的动态干燥行为的环境条件和化学品的影响。有许多在该协议的关键步骤。首先,SC含水量明显膨胀;因此,SC厚度的面内位移以及测量准确预测的弹性模量和干燥应力大小是至关重要的。其次,样品?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

The authors have no acknowledgements.

Materials

Silicone elastomer base Dow-Corning 1064291
Silicone elastomer Curing Agent Dow-Corning 1015311
FluoSpheres Carboxylate 0.1 µm yellow green fluorescent 505/515  Thermo Fisher F8803
FluoSpheres Carboxylate 1 µm yellow green fluorescent 505/515  Thermo Fisher F8823
FluoSpheres Carboxylate 1 µm nile red fluorescent 535/575  Thermo Fisher F8819
Trypsin from porcine pancreas Sigma-Aldrich T6567
Trypsin inhibitor type II-s Sigma-Aldrich T9128
(3-aminopropyl)triethoxysilane Sigma-Aldrich 440140
Sodium tetraborate Sigma-Aldrich 221732
Boric acid Sigma-Aldrich B0294
Phosphate buffered saline Sigma-Aldrich P7059
N-(3-Dimethylaminopropyl)-N-ethylcarbodiimide hydrochloride  Sigma-Aldrich E7750
Vortexer mixer VWR 58816-123
6mm diameter hole punch Sigma-Aldrich Z708860
SOLA 6-LCR-SB  Lummencor light engine No.3526
Cfi Plan Achro Uw 1x Objective Nikon Plan UW MRL00012
CFI Plan Fluor 40x Oil Objective 1.3 na – 0.20mm wd Nikon Plan Fluor MRH01401
Nikon Eclipse Ti-U inverted microscope  Nikon MEA53200
Clara-E Camera Andor DR-328G-C02-SIL
Remote Focus Attachment E-RFA Ergo Design Nikon 99888
Ti-S-E Motorized Stage Nikon MEC56110

References

  1. Van Hal, D., Jeremiasse, E., Junginger, H. E., Spies, F., Bouwstra, J. Structure of fully hydrated human stratum corneum: a freeze-fracture electron microscopy study. J. Invest. Dermatol. 106 (1), 89-95 (1996).
  2. Norlén, L., Al-Amoudi, A. Stratum corneum keratin structure, function, and formation: the cubic rod-packing and membrane templating model. J. Invest. Dermatol. 123 (4), 715-732 (2004).
  3. Liu, X., Cleary, J., German, G. K. The global mechanical properties and multi-scale failure mechanics of heterogeneous human stratum corneum. Acta Biomater. , (2016).
  4. Geerligs, M. . Skin layer mechanics. , (2010).
  5. Farage, M. S., Miller, K. W., Maibach, H. I. . Textbook of Aging Skin. , (2010).
  6. Levi, K., Kwan, A., Rhines, A. S., Gorcea, M., Moore, D. J., Dauskardt, R. H. Emollient molecule effects on the drying stresses in human stratum corneum. Br. J. Dermatol. 163 (4), 695-703 (2010).
  7. German, G. K., Pashkovski, E., Dufresne, E. R. Surfactant treatments influence drying mechanics in human stratum corneum. J. Biomech. 46 (13), 2145-2151 (2013).
  8. Liu, X., German, G. K. The effects of barrier disruption and moisturization on the dynamic drying mechanics of human stratum corneum. J. Mech. Behav. Biomed. Mater. 49 (13), 80-89 (2015).
  9. Levi, K., Weber, R. J., Do, J. Q., Dauskardt, R. H. Drying stress and damage processes in human stratum corneum. Int. J. Cosmet. Sci. 32 (4), 276-293 (2010).
  10. Levi, K., et al. Effect of glycerin on drying stresses in human stratum corneum. J. Dermatol. Sci. 61, 129-131 (2011).
  11. Fluhr, J. W., Darlenski, R., Surber, C. Glycerol and the skin: holistic approach to its origin and functions. Br. J. Dermatol. 159 (1), 23-34 (2008).
  12. German, G. K., et al. Heterogeneous drying stresses in stratum corneum. Biophys. J. 102 (11), 2424-2432 (2012).
  13. Willert, C. E., Gharib, M. Digital particle image velocimetry. Exp. Fluids. 10 (4), 181-193 (1991).
  14. Mertz, A. F., et al. Scaling of traction forces with the size of cohesive cell colonies. Phys. Rev. Lett. 108 (19), 1-5 (2012).
  15. Banerjee, S., Marchetti, M. C. Substrate rigidity deforms and polarizes active gels. Euro Phys. Lett. 96 (2), 28003 (2011).
  16. Edwards, C. M., Schwarz, U. S. Force localization in contracting cell layers. Phys. Rev. Lett. 107 (12), 128101 (2011).
  17. Cesa, C., et al. Micropatterned silicone elastomer substrates for high resolution analysis of cellular force patterns. Rev. Sci. Instrum. 78 (3), 34301 (2007).
  18. Wu, K. S., Van Osdol, W. W., Dauskardt, R. H. Mechanical And Microstructural Properties Of Stratum Corneum. Mater. Res. Soc. 724, 27-33 (2002).
  19. Yuan, Y., Verma, R. Measuring microelastic properties of stratum corneum. Colloids Surf. B. 48 (1), 6-12 (2006).
  20. Christensen, M. S., Hargens, C. W., Nacht, S., Gans, E. H. Viscoelastic properties of intact human skin: instrumentation, hydration effects, and the contribution of the stratum corneum. J Invest. Dermatol. 69 (3), (1977).
  21. Pailler-Mattei, C., Bec, S., Zahouani, H. In vivo measurements of the elastic mechanical properties of human skin by indentation tests. Med. Eng.Phys. 30 (5), 599-606 (2008).
check_url/kr/55336?article_type=t

Play Video

Cite This Article
Liu, X., German, G. K. Measuring and Modeling Contractile Drying in Human Stratum Corneum. J. Vis. Exp. (121), e55336, doi:10.3791/55336 (2017).

View Video