Summary

一个<em>体外</em鼠类的椎间盘>器官培养模型

Published: April 11, 2017
doi:

Summary

椎间盘(IVD)的整个器官培养保留天然的细胞外基质,细胞的表型,和细胞 – 基质相互作用。在这里我们将介绍使用鼠标腰部,并在其脊柱功能单位尾椎的IVD并利用该系统的几个应用的IVD文化体系。

Abstract

椎间盘(IVD)变性是一个显著贡献腰痛。体外诊断是用于传输和抑制负荷在脊椎关节的纤维软骨。的IVD由富含蛋白聚糖髓核(NP)和通过软骨端板夹在中间的富胶原蛋白的纤维环(AF)的。连同相邻椎骨,椎骨-IVD结构形成功能性脊柱单元(FSU)。这些微结构包含独特的细胞类型,以及独特的细胞外基质。的FSU的整个器官培养保留天然的细胞外基质,细胞分化的表型,和细胞 – 基质相互作用。因此,器官培养技术是用于研究IVD的复杂生物学机制是特别有用的。在这里,我们描述了整个培养腰鼠标FSU的,它为研究疾病机理和治疗的IVD的理想平台的高通量方法。此外,我们描述了小号利用此器官培养方法进行进一步的研究,其中包括对比增强显微CT成像和IVD的三维高分辨率有限元建模everal应用程序。

Introduction

腰痛(LBP)是全球残疾和工作场所的主导因素生产力损失,以及单独的美国人超过50十亿美元花费在治疗腰痛1。虽然普遍,LBP的病因仍然是复杂和多因素。然而,椎间盘(IVD)退变是LBP 2最显著的危险因素之一。

的IVD由三个微观结构:外纤维环(AF)中,内部髓核(NP),以及近端和远端3夹住整个结构的两个端板软骨。与衰老和变性,所述IVD部件结构上发生变化,在组成上,并机械4。这些变化包括在NP蛋白聚糖和水合的损失,椎间盘高度降低,恶化机械能力5。这些改变是常伴促进炎症反应,以及嗜中性粒细胞和背根神经节侵入到关节间隙中,导致LBP症状6事件的级联最终细胞因子。

研究IVD变性的机制是在人类中具有挑战性,因为它往往是不可能的腰背痛发生前到变性的原因隔离。因此,简化了实验系统下到IVD器官的还原方法允许原因变量的机械微调和检查其下游效应5。该系统被减少到只有天然细胞群和周围的细胞外基质,从而使的外部刺激对IVD退化的影响的直接解释。此外,更低的成本和小鼠模型的可扩展性,以及大量的转基因动物7,允许吨体外诊断退行性机制和潜在的治疗,他迅速有针对性的筛选。在这里,我们描述了其中IVD细胞和组织稳定性被保持超过21天,给予体外诊断稳态,机械,结构,和炎性样式向特定焦点鼠器官培养系统。使用这种方法,我们重点监测的体外诊断试剂在刺致损伤模型8功能的改变,了解背后的椎间盘退变的机制。此外,我们描述这个器官培养方法的几个应用程序,以进行进一步的研究,包括对比增强显微CT成像和IVD的三维高分辨率模型。

Protocol

所有的动物实验均按照圣路易斯动物研究委员会的华盛顿大学进行。 1.动物获得的小鼠的两个菌株:10周龄的BALB / C(N = 6,BALB-M,BALB / cAnNTac)和10周龄核因子kappa-B-萤光素酶报道动物(NF-κβ-LUC)饲养在的BALB / c背景(N = 6,BALB / C-TG(RELA-LUC)31Xen)。 之前夹层,在2.5-3升/分钟的流速进行5分钟,然后停留时间的另外的2分钟安乐死与CO 2过量的动物。 <…

Representative Results

图2-3示出的蛋白聚糖分布,NF-κB表达,刚度,粘度,椎间盘高度,和湿重为培养的小鼠体外诊断的代表性结果。如果适当地培养,对照组的IVD参数不应该从新鲜组显著不同。如果培养物感染或以其它方式受损,对照组将从新鲜组不同,特别是在NF-κB表达和蛋白聚糖分布(未示出结果)。 图器官培养的使用对比增强显微CT获得IVD的三维模型4-5示出的应用程序;?…

Discussion

该协议概述了监测在IVD的生物变化鼠FSU的重点器官培养。这些文化的成功维护需要仔细无菌操作技术。特别地,解剖步骤2.1-2.6和培养步骤3.1-3.6需要特别小心,以确保保持在无菌条件,并且这些步骤应当在分离的过程室具有HEPA气流以减少污染物优选进行。由于解剖过程导致的创伤组织中,在3.5的24小时的预处理周期是必需的所有处理组,包括对照。生存力测定法可以用于?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作是由华盛顿大学骨骼肌肉研究中心(NIH P30 AR057235),分子影像中心(NIH P50 CA094056),力学生物学培训资助(NIH 5T32EB018266),美国国立卫生研究院R21AR069804和NIH K01AR069116支持。笔者想感谢帕特里克·黄为他的数据收集捐款。

Materials

96 well plate Midwest Scientific TP92096 Used for biochemical assays
24 well plate Midwest Scientific TP92024 Used for organ culture
25 ml pipettes Midwest Scientific TP94024 Used for organ culture
10 ml pipettes Midwest Scientific TP94010 Used for organ culture
5 ml pipettes Midwest Scientific TP94005 Used for organ culture
500 ml bottle top filters, 22um Midwest Scientific TP99505 Used for filter media
10 ul pipette tips Midwest Scientific NP89140098 Used for biochemical assays
200 ul pipette tips Midwest Scientific NP89140900 Used for biochemical assays
1000 ul pipette tips Midwest Scientific NP89140920 Used for biochemical assays
DMEM /F-12 Invitrogen 11330032 Used for culture media
Optiray 350 Guebert 19133341 Used for contrast enhanced microCT
Fetal Bovine Serum Sigma F2442 Used for culture media
Penicillin Streptomycin  Sigma P4333 Used for culture media
Tetrazolium Blue Chloride Sigma T4375 Used for biochemical assays
D-Luciferin Sigma L6152 Used for bioluminescence imaging
Chondroitin Sulfate Sigma C9819 Used for biochemical assays
10% Phosphomolybdic Acid Solution Sigma HT152 Used for contrast enhanced microCT
Safranin O Sigma S8884 diluted to .1% concentration (in water)
Fast Green FCF Sigma F7258 .001% concentration
Papain from papaya latex Sigma  P3125 Used for biochemical assays
DAPI Sigma-Aldrich D9542 Nucleic acid staining
Cyanoacrylate Glue Loctite 234790 Adhesive 
1.5 ml Microcentrifuge Tubes  Fischer Scientific S348903 Used for biochemical assays
Big Equipment
BioDent ActiveLife For mechanical testing
Cytation 5 Biotek Spectrophotometer
AxioCam503 Carl Zeiss AG Microscope
VivaCT40 Scanco MicroCT
Analytical balance Denver Instrument Company A-200DS Analytical balance
Incubator HERAcell 150i Thermo Scientific Organ Culture
Dissection Scope VistaVision Used during dissection
Laser Micrometer Keyence LK-081 Measuring disc height
Microcentrifuge 5810 R Eppendorf Used for biochemical assays
Microtome Leica  RM2255 Used for histology
Software
Prism 7 GraphPad For statistics
MATLAB R2014a Mathworks For modeling
Osiri-LXIV Pixmeo Open Source
MeshLab v1.3.3 Visual Computing Lab – ISTI – CNR Open Source
PreView/FEBio 2.3 Utah MRL & Columbia MBL Open Source
ImageJ NIH
Microsoft Excel Windows
Dissection Tools
Cohan-Vannas Spring Scissors  Fine Science Tools   15000-02 Or any nice pair of spring scissors
Fine Scissors – Sharp  (small) Fine Science Tools   14060-09
Fine Scissors – Sharp  (larger) Fine Science Tools   14060-11
Dumont #5 Forceps Fine Science Tools   11252-40 At least 2; can also use #3 
Extra Fine Graefe Forceps, serrated Fine Science Tools   11150-10 At least 2
Micro-Adson Forceps, serrated World Precision Instruments 503719-12
Micro-Adson Forceps, teeth World Precision Instruments 501244
Scalpel Handle – #3 Fine Science Tools   10003-12
Scalpel Handle – #4 Fine Science Tools   10004-13
Scalpel Blades – #23 Fine Science Tools   10023-00
Insect Pins , size 000 Fine Science Tools   26000-25
27G Needle BD PrecisionGlide Needles BD305109

References

  1. Dagenais, S., Caro, J., Haldeman, S. A systematic review of low back pain cost of illness studies in the United States and internationally. Spine J. 8 (1), 8-20 (2008).
  2. Urban, J., Roberts, S. Degeneration of the intervertbral disc. Arthritis Res Ther. 5 (6), 1-48 (2003).
  3. Mirza, S. K., White, A. A. Anatomy of intervertebral disc and pathophysiology of herniated disc disease. J Clin Laser Med Surg. 13 (3), 131-142 (1995).
  4. Acaroglu, E. R., et al. Degeneration and aging affect the tensile behavior of human lumbar anulus fibrosus. Spine. 20 (24), 2690-2701 (1995).
  5. Abraham, A. C., Liu, J. W., Tang, S. Y. Longitudinal changes in the structure and inflammatory response of the intervertebral disc due to stab injury in a murine organ culture model. J Orthop Res. 34 (8), 1431-1438 (2016).
  6. Ohtori, S., Inoue, G., Miyagi, M., Takahashi, K. Pathomechanisms of discogenic low back pain in humans and animal models. Spine J. 15 (6), 1347-1355 (2015).
  7. Pelle, D. W., et al. Genetic and functional studies of the intervertebral disc: A novel murine intervertebral disc model. PLoS ONE. 9 (12), (2014).
  8. Zhang, H., et al. Time course investigation of intervertebral disc degeneration produced by needle-stab injury of the rat caudal spine. J Neurosurg: Spine. 15 (4), 404-413 (2011).
  9. Liu, J. W., Abraham, A. C., Tang, S. Y. The high-throughput phenotyping of the viscoelastic behavior of whole mouse intervertebral discs using a novel method of dynamic mechanical testing. J Biomech. 48 (10), 2189-2194 (2015).
  10. Lin, K. H., Wu, Q., Leib, D. J., Tang, S. Y. A novel technique for the contrast-enhanced microCT imaging of murine intervertebral discs. J Mech Behav Biomed Mater. 63, (2016).
  11. Pasparakis, M. Regulation of tissue homeostasis by NF-kappaB signalling: implications for inflammatory diseases. Nat Rev: Immunol. 9 (11), 778-788 (2009).
  12. O’Connell, G. D., Vresilovic, E. J., Elliott, D. M. Comparison of animals used in disc research to human lumbar disc geometry. Spine. 32 (3), 328-333 (2007).
  13. Lee, C. R., et al. In vitro organ culture of the bovine intervertebral disc: effects of vertebral endplate and potential for mechanobiology studies. Spine. 31, 515-522 (2006).
  14. Chan, S. C., Gantenbein-Ritter, B. Preparation of Intact Bovine Tail Intervertebral Discs for Organ Culture. J. Vis. Exp. (60), e3490 (2012).
  15. Holguin, N., Aguilar, R., Harland, R. A., Bomar, B. A., Silva, M. J. The aging mouse partially models the aging human spine: lumbar and coccygeal disc height, composition, mechanical properties, and Wnt signaling in young and old mice. J Appl Physiol. 116 (12), (2014).
check_url/kr/55437?article_type=t

Play Video

Cite This Article
Liu, J. W., Lin, K. H., Weber, C., Bhalla, S., Kelso, S., Wang, K., Tang, S. Y. An In Vitro Organ Culture Model of the Murine Intervertebral Disc. J. Vis. Exp. (122), e55437, doi:10.3791/55437 (2017).

View Video