Summary

原子力显微镜检查DNA损伤识别核苷酸切除修复

Published: May 24, 2017
doi:

Summary

Here, the study of different DNA lesion recognition approaches via single molecule AFM imaging is demonstrated with the nucleotide excision repair system as an example. The procedures of DNA and protein sample preparations and experimental as well as analytical details for the AFM experiments are described.

Abstract

AFM imaging is a powerful technique for the study of protein-DNA interactions. This single molecule method allows the simultaneous resolution of different molecules and molecular assemblies in a heterogeneous sample. In the particular context of DNA interacting protein systems, different protein complex forms and their corresponding binding positions on target sites containing DNA fragments can thus be distinguished. Here, an application of AFM to the study of DNA lesion recognition in the prokaryotic and eukaryotic nucleotide excision DNA repair (NER) systems is presented. The procedures of DNA and protein sample preparations are described and experimental as well as analytical details of the experiments are provided. The data allow important conclusions on the strategies by which target site verification may be achieved by the NER proteins. Interestingly, they indicate different approaches of lesion recognition and identification for the eukaryotic NER system, depending on the type of lesion. Furthermore, distinct structural properties of the two different helicases involved in prokaryotic and eukaryotic NER result in and explain the different strategies observed for these two systems. Importantly, these experimental and analytical approaches can be applied not only to the study of DNA repair but also very similarly to other DNA interacting protein systems such as those involved in replication or transcription processes.

Introduction

原子力显微镜(AFM)是分析蛋白质 – DNA相互作用1,2,3,4,5,6,7,8,9的有力技术。它只需要少量的样品材料,以单分子水平的分辨率直接观察异质样品。蛋白质的不同构象或寡聚状态可能产生异质性。特别地,在蛋白质-DNA样品的上下文中,蛋白质复合物可以显示通常的DNA结合诱导的不同化学计量学和/或构象,或者结合DNA中的特定靶位点。不均匀的样品也可能含有两种(或多种)不同种类的蛋白质和不同的蛋白质复合物形式( 例如 ,仅由一种类型的蛋白质与异源复合物组成)可能与DNA不同的相互作用。这里讨论的研究利用空气中的AFM成像技术,将DNA修复蛋白的静态,干燥样品结合到长(〜900个碱基对,bp)的含有病变的DNA片段,其代表这些蛋白质的靶标。 AFM的高分子分辨率允许区分不同类型的蛋白质复合物并确定蛋白质在DNA片段上的结合位置。重要的是,将损伤引入到确定位置的DNA底物中。因为DNA中的病变部位的位置是已知的,所以与DNA结合的蛋白质的分布提供了(不同的)蛋白质复合物的(不同的)病变识别特性的洞察, 例如 ,它们如何识别特定类型的病变(比较对未损伤的DNA) 2,3 <supclass =“xref”> 4,5,6 。他们在DNA上的位置也可以区分特异性结合病变的蛋白质复合物和DNA上非特异性结合的复合物。这些不同复杂类型(复合物特异性结合病变与非特异性复合物)的分离表征可以揭示在靶位点鉴定中诱导的复合物中潜在的构象变化。

在这里聚集的DNA修复蛋白是解旋酶,其负责核苷酸切除修复(NER)途径中的病变识别。在细菌中,NER通过蛋白质UvrA,UvrB和UvrC实现。 UvrA负责UvaA 2 / UvrB 2 DNA扫描复合物中的初始病变感测。通过UvrB的病变验证,该复合物转化为在病变部位结合的单体UvrB,然后该特异性复合物可以招募p核型NER核酸内切酶UvrC。 UvrC切除含有病变的短(12-13nt)单链DNA(ssDNA)。然后通过DNA聚合酶重新填充缺失的片段。最后,DNA连接酶用原始DNA 9,10密封新合成的片段。在真核生物中,NER级联的大多数蛋白质是大的多聚体转录因子II H(TFIIH)复合物的一部分。 通过三聚体CEN2-XPC-HR23B复合物进行初始病变感染后,TFIIH被引入DNA靶位点。当复合物中的XPD验证NER靶病变的存在时,招募真核NER核酸内切酶XPG和XPF以消除含有病变9,10的短(24-32nt)片段的ssDNA。具体来说,研究了分离自原核和真核NER的解旋酶UvrB和XPD。这些解剖器需要不配对的区域DNA(DNA气泡)连接到两条DNA单链之一上,随后沿着ATP水解促进的该链转移。除DNA损伤之外,DNA泡也被引入作为蛋白质负载位点的底物中。

以前已经描述了用于制备特定病变DNA底物的方法11 。它需要一个循环DNA构建体(质粒),其具有用于切口酶的两个紧密间隔的限制性位点。在本研究的上下文中,使用质粒pUC19N(2729bp)(由S.Wilson的实验室,NIEHS创建)。该质粒含有三个紧密间隔的限制性位点,用于构建48个核苷酸(nt)延伸的切口酶Nt.BstNBI。与切口酶孵育后,可以除去这些位点之间的ssDNA片段,并用含有任何靶标特征的寡核苷酸代替。在每个步骤之后,通过琼脂糖凝胶测试完全酶消化电泳。由于与原来的超螺旋质粒相比,镍环状DNA的电泳迁移率较低,因此可以区别。通过用特异性底物寡核苷酸替代除去的拉伸的替代物可以通过限制酶进行消化来进行评估,所述限制酶将底物专门在切口之间的区域内切割。因此,通过酶对圆形质粒的线性化将被抑制,并且在插入特异性寡核苷酸后恢复。最后,两个核酸内切酶限制性位点(理想的是单个切割器)允许产生线性DNA底物,其长度根据需要和特定的靶位点在确定的位置以及与病变相距一定距离的DNA气泡'或3'方向。

可以通过 AFM成像来检查NER解旋酶对病变的识别。在t处的解旋酶失调的DNA易位他的病变部位作为DNA上的蛋白质位置分布的峰值可见,表明病变识别。因为这些解旋酶的DNA易位进一步是定向的,具有5'至3'极性,病变识别对加载位点的位置(病毒上游或下游的DNA气泡)的依赖性还指示是否优先识别病变在易位或相对的非易位的ssDNA链5,9上 。在以下部分中,将介绍所使用的方法,并简要讨论这些实验的主要发现。重要的是,类似于本文所示的DNA修复的示范性工作,AFM成像可以应用于不同DNA相互作用系统的研究,例如DNA复制或转录8,12,13,14 </SUP>。

Protocol

样品制备 DNA底物的制备11 在质粒中产生ssDNA间隙在具有合适的切口酶(这里为Nt.BstNBI)的反应管中完全消化质粒样品(这里:修饰的pUC19,pUC19N),然后使用根据制造商的方案的条件进行酶热灭活(参见图1的示意图介绍)。以〜50μL和〜500nM质粒开始,得到足够的产率。 通过琼脂糖凝胶电泳验证稀释样品(〜20nM) 15质粒切…

Representative Results

基于蛋白质复合体积区分不同复杂类型原核NER解旋酶UvrB的解旋酶活性受DNA结合22,23刺激。 UvrB需要DNA中的未配对区域(DNA气泡)才能正确地加载到两条单链DNA链之一上。 在体内 ,该DNA结构通过NER级联的另一种蛋白质的DNA相互作用提供;在体外实验中,气泡可以人造地引入到与目标病变附近的dsDNA片?…

Discussion

蛋白质在含有特定靶位点的长DNA片段上的结合位置的AFM统计分析可以揭示蛋白质识别这些位点2,3,4,5,6的特定策略的有趣细节。为了解释所得到的位置分布,DNA中靶标的位置需要精确地知道。这是通过将定义明确的序列位置的特定位点引入循环质粒DNA并使用限制酶技术切割包含该特异位点的DNA片段来实现的。在蛋白质结合位置的AFM图像分析中,只有具有正确长度的DNA片段(与切出的片段的全长一致?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

PUC19N,含CPD的寡核苷酸和p44分别由Samuel Wilson,Korbinian Heil和Thomas Carell以及Gudrun Michels和Caroline Kisker提供。这项工作得到德意志民主共和国(DFG)FZ82和TE-671/4向IT部门的资助。

Materials

Molecular Force Probe (MFP) 3D Asylum Research N/A atomic force microscope (AFM)
Precision 390 DELL N/A computer
ThermoMixer and 1.5 ml block Eppendorf 5382000015 heat block for DNA preparation
Rotilabo Block-Heater H 250 & blocks for 0.5 ml tubes Carl Roth GmbH Y264.1 & Y267.1 heat block for protein-DNA incubations
Mini-Sub Cell GT Bio-Rad Laboratories GmbH 1704467 electrophoresis chamber with gel caster and power supply
Power Pac Basic Bio-Rad Laboratories GmbH 1645050 electrophoresis power supply
Centifuge 5415 D with rotor Eppendorf 2262120-3 table centrifuge
Ultra-Lum electronic UV transillumonator MEB-15 Ultralum 900-1322-02 UV irradiation table
NanoDrop ND-1000 VWR International / PEQLAB Biotechnologie GmbH N/A UV spectrophotometer
TKAX-CAD with 0.2 μm capsule filter Unity Lab Services N/A water deionization and filter unit
Name Company Catalog number Comments
Software
MFP software on Igor Pro Asylum Research N/A AFM software
ImageJ (open source Java image processing) NIH Image N/A Image analysis software
Excel (Microsoft Office) Microsoft Corporation N/A data analysis software
Origin9 / Origin2016 OriginLab Corporation N/A statistical data analysis and graphing software
Name Company Catalog number Comments
Material
OMCL-AC240TS Olympus OMCL-AC240TS AFM cantilevers
grade V-5 muscovite SPI Supplies 1805 mica sheets
Amicon Ultra 0.5ml 50k Ultracell Millipore Ireland Ltd. UFC505096 centrifuge filters
NucleoSpin Extract II   Macherey-Nagel GmbH 740 609.250 Agarose gel extraction kit
Rotilabo cellulose paper type 111A Carl Roth GmbH AP59.1 AFM deposition blotting paper
Anatop 25 (0.02 μm) Whatman GmbH 6809-2102 syringe filter
SSpI, BspQI New England Biolabs (NEB) R0132, R0712 restriction enzymes for DNA substrate preparation
XhoI, BglII R0146, R0144 restriction enzymes for DNA preparation controls
nicking restriction enzyme Nt.BstNBI New England Biolabs (NEB) R0607 nickase
T4 DNA ligase New England Biolabs (NEB) M0202S Ligase
Tris, HEPES Carl Roth GmbH 4855, 9105 buffer chemicals
NaCl, MgCl2, KCl, MgAcetate Carl Roth GmbH 3957, HN03, HN02, P026 salt chemicals
NaAc Sigma-Aldrich Chemie GmbH 32318 salt chemicals
DTT, TCEP, EDTA 6908, HN95, 8040 chemicals/reagents
agarose, acetic acid, HCl Carl Roth GmbH 2267, 3738, K025 reagents
ATPƔS Jena Bioscience NU-406 nucleotides
ATP Carl Roth GmbH K054 nucleotides
oligonucleotide #1 in Table 1 Biomers custom complementary DNA oligonucleotide
oligonucleotides #2, #3, and #6 in Table 1 Integrated DNA Technologies (IDT) custom fluorescein containing oligonucleotides
oligonucleotides #4  and #5 in Table 1 private (available from e.g. TriLink or GlenResearch) CPD containing oligonucleotides
SafeSeal reaction tube 0.5 ml and 1.5 ml Sarstedt 72.704 and 72.706 incubation tubes
GeneRuler 1 kb Thermo Scientific SM0311 DNA ladder
6x concentrate gel loading dye purple New England Biolabs (NEB) 51406 DNA loading dye
Midori Green  Nippon Genetics Europe GmbH 999MG28055 DNA stain

References

  1. Janicijevic, A., Ristic, D., Wyman, C. The molecular machines of DNA repair: scanning force microscopy analysis of their architecture. J. Microsc. 212 (3), 264-272 (2003).
  2. Wang, H., et al. DNA bending and unbending by MutS govern mismatch recognition and specificity. Proc. Natl. Acad. Sci. USA. 100 (25), 14822-14827 (2003).
  3. Tessmer, I., et al. Mechanism of MutS searching for DNA mismatches and signaling repair. J. Biol. Chem. 283 (52), 36646-36654 (2008).
  4. Wagner, K., Moolenaar, G., van Noort, J., Goosen, N. Single-molecule analysis reveals two separate DNA-binding domains in the Escherichia coli UvrA dimer. Nucleic Acids Res. 37 (6), 1962-1972 (2009).
  5. Buechner, C. N., et al. Strand-specific recognition of DNA damages by XPD provides insights into nucleotide excision repair substrate versatility. J Biol. Chem. 289 (6), 3613-3624 (2014).
  6. Van der Linden, E., Sanchez, H., Kinoshita, E., Kanaar, R., Wyman, C. RAD50 and NBS1 form a stable complex functional in DNA binding and tethering. Nucleic Acids Res. 37 (5), 1580-1588 (2009).
  7. Fuentes-Perez, M. E., Dillingham, M., Moreno-Herrero, F. AFM volumetric methods for the characterization of proteins and nucleic acids. Methods. 60, 113-121 (2013).
  8. Shlyakhtenko, L. S., Lushnikov, A. Y., Miyagi, A., Lyubchenko, Y. L. Specificity of binding of single-stranded DNA-binding protein to its target. 생화학. 51, 1500-1509 (2012).
  9. Wirth, N., et al. Conservation and Divergence in Nucleotide Excision Repair Lesion Recognition. J. Biol. Chem. 291 (36), 18932-18946 (2016).
  10. Kuper, J., Kisker, C. Damage recognition in nucleotide excision DNA repair. Curr. Opin. Struct. Biol. 22, 88-93 (2012).
  11. Buechner, C. N., Tessmer, I. DNA substrate preparation for atomic force microscopy studies of protein-DNA interactions. J. Mol. Recognit. 26 (12), 605-617 (2013).
  12. Sun, Z., Tan, H. Y., Bianco, P. R., Lyubchenko, Y. L. Remodeling of RecG Helicase at the DNA Replication Fork by SSB Protein. Sci. Rep. 5, 9625 (2015).
  13. Billingsley, D. J., Bonass, W. A., Crampton, N., Kirkham, J., Thomson, N. H. Single-molecule studies of DNA transcription using atomic force microscopy. Phys. Biol. 9 (2), 021001 (2012).
  14. Maurer, S., Fritz, J., Muskhelishvili, G., Travers, A. RNA polymerase and an activator form discrete subcomplexes in a transcription initiation complex. EMBO J. 25 (16), 3784-3790 (2006).
  15. Sambrook, J. . Molecular Cloning: A Laboratory Manual. 1, (2012).
  16. Theis, K., Chen, P. J., Skorvaga, M., Van Houten, B., Kisker, C. Crystal structure of UvrB, a DNA helicase adapted for nucleotide excision repair. EMBO J. 18 (24), 6899-6907 (1999).
  17. Kuper, J., et al. In TFIIH, XPD helicase is exclusively devoted to DNA repair. PLoS Biol. 12 (9), e1001954 (2014).
  18. Shlyakhtenko, L. S., et al. Silatrane-based surface chemistry for immobilization of DNA, protein-DNA complexes and other biological materials. Ultramicroscopy. 97, 279-287 (2003).
  19. Roth, H. M., et al. XPB helicase regulates DNA incision by the Thermoplasma acidophilum endonuclease Bax1. DNA Repair. 11 (3), 286-293 (2012).
  20. Ratcliff, G. C., Erie, D. A. A Novel Single-Molecule Study to Determine Protein-Protein Association Constants. J. Am. Chem. Soc. 123 (24), 5632-5635 (2001).
  21. Yang, Y., Sass, L. E., Du, C., Hsieh, P., Erie, D. A. Determination of protein-DNA binding constants and specificities from statistical analyses of single molecules: MutS-DNA interactions. Nucleic Acids Res. 33 (13), 4322-4334 (2005).
  22. Caron, P. R., Grossman, L. Involvement of a cryptic ATPase activity of UvrB and its proteolysis product, UvrB* in DNA repair. Nucleic Acids Res. 16 (22), 10891-10902 (1988).
  23. Wang, H., et al. UvrB domain 4, an autoinhibitory gate for regulation of DNA binding and ATPase activity. J. Biol. Chem. 281 (22), 15227-15237 (2006).
  24. Chammas, O., Billingsley, D. J., Bonass, W. A., Thomson, N. H. Single-stranded DNA loops as fiducial markers for exploring DNA-protein interactions in single molecule imaging. Methods. 60 (2), 122-130 (2013).
  25. Truglio, J. J., et al. Structural basis for DNA recognition and processing by UvrB. Nat. Struct. Mol. Biol. 13 (4), 360-364 (2006).
  26. Kuper, J., Wolski, S. C., Michels, G., Kisker, C. Functional and structural studies of the nucleotide excision repair helicase XPD suggest a polarity for DNA translocation. EMBO J. 31 (2), 494-502 (2012).
  27. Verhoeven, E. E., Wyman, C., Moolenaar, G. F., Goosen, N. The presence of two UvrB subunits in the UvrAB complex ensures damage detection in both DNA strands. EMBO J. 21 (15), 4196-4205 (2002).
  28. Verhoeven, E. E., Wyman, C., Moolenaar, G. F., Hoeijmakers, J. H., Goosen, N. Architecture of nucleotide excision repair complexes: DNA is wrapped by UvrB before and after damage recognition. EMBO J. 20 (3), 601-611 (2001).
  29. Moolenaar, G. F., et al. The Role of ATP Binding and Hydrolysis by UvrB during Nucleotide Excision Repair. J. Biol. Chem. 275, 8044-8050 (2000).
check_url/kr/55501?article_type=t

Play Video

Cite This Article
Gross, J., Wirth, N., Tessmer, I. Atomic Force Microscopy Investigations of DNA Lesion Recognition in Nucleotide Excision Repair. J. Vis. Exp. (123), e55501, doi:10.3791/55501 (2017).

View Video