Summary

Ein Ratten-Tibia-Wachstumsplatten-Verletzungsmodell, um Reparaturmechanismen zu charakterisieren und Wachstumsplatten-Regenerationsstrategien zu bewerten

Published: July 04, 2017
doi:

Summary

Die Wachstumsplatte ist eine knorpelige Region in den langen Knochen der Kinder, wo Längswachstum auftritt. Bei Verletzung kann das Knochengewebe das Wachstum formen und beeinträchtigen. Wir beschreiben ein Rattenmodell der Wachstumsplattenverletzung, die zu knöchernem Reparaturgewebe führt und das Studium von Reparaturmechanismen und Wachstumsplattenregenerationsstrategien ermöglicht.

Abstract

Ein Drittel aller pädiatrischen Frakturen beinhaltet die Wachstumsplatte und kann zu einem beeinträchtigten Knochenwachstum führen. Die Wachstumsplatte (oder Physis) ist Knorpelgewebe, das am Ende aller langen Knochen bei Kindern gefunden wird, die für das Längsknochenwachstum verantwortlich ist. Einmal beschädigt, kann Knorpelgewebe innerhalb der Wachstumsplatte vorzeitige Verknöcherung erfahren und zu unerwünschtem knöchernem Reparaturgewebe führen, das einen "knöchernen Stab" bildet. In einigen Fällen kann dieser knöcherne Stab zu Knochenwachstumsdeformitäten führen, wie z. B. Winkeldeformitäten, oder er kann das langsame Knochenwachstum vollständig stoppen. Es gibt derzeit keine klinische Behandlung, die eine verletzte Wachstumsplatte vollständig reparieren kann. Mit einem Tier-Modell der Wachstumsplatte Verletzung besser zu verstehen, die Mechanismen zugrunde liegenden Knochenbildung und zu identifizieren Möglichkeiten, um es zu hemmen ist eine großartige Gelegenheit, um bessere Behandlungen für Wachstumsplatten Verletzungen zu entwickeln. Dieses Protokoll beschreibt, wie man die Ratten proximale Tibia-Wachstumsplatte unter Verwendung eines Bohrlochdefekts stört. Dieses smaDas Tiermodell produziert zuverlässig einen knöchernen Stab und kann zu Wachstumsdeformitäten führen, die denen ähnlich sind, die bei Kindern gesehen werden. Dieses Modell ermöglicht die Untersuchung der molekularen Mechanismen der Knochenbarrenbildung und dient als Mittel, um mögliche Behandlungsmöglichkeiten für Wachstumsplattenverletzungen zu testen.

Introduction

Wachstumsplattenverletzungen machen 30% aller pädiatrischen Frakturen aus und können zu einem beeinträchtigten Knochenwachstum führen 1 . Zusätzlich zu Frakturen können Wachstumsplattenverletzungen durch andere Ätiologien verursacht werden, einschließlich Osteomyelitis 2 , primäre Knochentumore 3 , Strahlung und Chemotherapie 4 und iatrogene Schäden 5 . Die Wachstumsplatte (oder Physis) ist eine Knorpelregion am Ende der Kinderknochen, die für das Knochenwachstum verantwortlich ist. Es fährt die Knochendehnung durch endochondrale Verknöcherung; Chondrozyten unterziehen sich der Proliferation und Hypertrophie und werden dann durch ankommende Osteoblasten umgebaut, um den Trabekelknochen zu bilden 6 . Die Wachstumsplatte ist auch eine schwache Fläche des sich entwickelnden Skeletts, so dass es anfällig für Verletzungen ist. Die Hauptanliegen bei Wachstumsplattenbrüchen oder -verletzungen ist, dass das beschädigte Knorpelgewebe innerhalb der Wachstumsplatte b kannE ersetzt durch unerwünschtes knöchernes Reparaturgewebe, auch bekannt als "knöcherne Stange". Abhängig von seiner Größe und Lage innerhalb der Wachstumsplatte kann der knöcherne Stab zu kantigen Deformitäten oder komplettem Wachstumsstillstand führen, eine verheerende Folge für kleine Kinder, die noch nicht ihre volle Höhe erreicht haben 7 .

Es gibt derzeit keine Behandlung, die eine verletzte Wachstumsplatte vollständig reparieren kann. Sobald sich die knöcherne Stange bildet, muss der Kliniker entscheiden, ob er ihn chirurgisch entfernen soll oder nicht. Patienten mit mindestens 2 Jahren oder 2 cm Skelettwachstum verbleibend und mit einem knöchernen Stab, der weniger als 50% des Wachstumsplattenbereichs überspannt, sind in der Regel Kandidaten für knöcherne Raffinierung 8 . Die chirurgische Entfernung des knöchernen Stabes folgt oftmals der Zwischenlage eines autologen Fett-Transplantats, um eine Reformierung des knöchernen Gewebes zu verhindern und die umgebende unverletzte Wachstumsplatte zu ermöglichen, das Wachstum wiederherzustellen. Diese Techniken sind jedoch problEmatic und oft scheitern, was zu knöcherne Bar Wiederholung und weiterhin negative Auswirkungen auf das Wachstum 9 . Es besteht ein kritischer Bedarf, effektive Behandlungen zu entwickeln, die nicht nur die Knochenbildung verhindern, sondern auch den Wachstumsplattenknorpel regenerieren und so die normale Knochendehnung wiederherstellen.

Die molekularen Mechanismen, die der Knochenbarren zugrunde liegen, müssen noch vollständig aufgeklärt werden. Ein besseres Verständnis dieser biologischen Mechanismen könnte zu effektiveren therapeutischen Interventionen für Kinder führen, die an Wachstumsplattenverletzungen leiden. Da das Studium dieser Mechanismen beim Menschen schwierig ist, wurden Tiermodelle verwendet, insbesondere das Rattenmodell der Wachstumsplattenverletzung 10 , 11 , 12 , 13 , 14 , 15 , 16 . Die hier dargestellte MethodePapier beschreibt, wie ein Bohrlochdefekt in der Ratten-Tibia-Wachstumsplatte zu vorhersagbarem und reproduzierbarem Reparaturgewebe führt, das erst sieben Tage nach der Verletzung eine Verknöcherung beginnt und bei 28 Tagen nach Verletzung eine vollständig ausgereifte Knochenstange bildet. Dies stellt ein kleines Tier- In-vivo- Modell zur Verfügung, in dem die biologischen Mechanismen der Knochenbarrenbildung untersucht werden können, sowie um neuartige Therapien zu bewerten, die den knöchernen Stab verhindern und / oder den Wachstumsplattenknorpel regenerieren können. Zum Beispiel kann dieses Modell verwendet werden, um chondrogene Biomaterialien zu testen, die Wachstumsplattenknorpel regenerieren und eine wertvolle Behandlung für Kinder mit Wachstumsplattenverletzungen bieten können. Die in diesem Papier vorgestellten Techniken beschreiben die chirurgischen Methoden, die zur Herstellung der Verletzung der Wachstumsplatte und der späteren Zufuhr von Biomaterialien zur Verletzungsstelle verwendet werden. Wir werden auch Methoden diskutieren, um die Knochenbildung zu beurteilen und das Gewebe zu reparieren.

Protocol

Alle Tierverfahren müssen vom örtlichen Institutionellen Tierpflege- und -ausschuss (IACUC) genehmigt werden. Das Tierprotokoll für das folgende Verfahren wurde von der University of Colorado Denver IACUC genehmigt. 1. Ratten erhalten HINWEIS: Sofern nicht genetisch veränderte Tiere gewünscht sind, werden zum Zeitpunkt der Operation 6 Wochen alte, skelettartig unreife Sprague-Dawley-Ratten benötigt. Andere Stämme könnten potentiell verwendet werden; Allerdi…

Representative Results

Eine erfolgreiche Wachstumsplattenverletzung mit dieser Methode beinhaltet die Störung des Zentrums der Tibia-Wachstumsplatte, ohne die Gelenkknorpeloberfläche zu stören. Bei knöchernem Reparaturgewebe wurde berichtet, dass es etwa 7 Tage nach der Verletzung anfängt und durch 28 Tage nach der Verletzung 13 vollständig entwickelt wird, wie durch Mikro-Computertomographie (Mikro-CT) sichtbar gemacht ( Abbildung 2 ). Obwohl diese Zeitpunkte hie…

Discussion

Ein Wachstumsplattenverletzungs-Tiermodell fügt unserem Verständnis der biologischen Mechanismen dieser Verletzung weitgehend hinzu, was möglicherweise zu effektiveren therapeutischen Interventionen für Kinder führt, die unter Verletzungen von Wachstumsplatten leiden. Um eine knöcherne Stange erfolgreich zu erstellen und ihre Entstehung in vivo unter Verwendung des in dieser Arbeit vorgestellten Modells zu studieren, ist es entscheidend, die Wachstumsplatte durch Bohren in einer ausreichenden Tiefe zu st?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Die Autoren bestätigen die Unterstützung durch das Nationale Institut für Arthritis und Muskel-Skelett- und Hautkrankheiten der National Institutes of Health (NIH) unter der Auszeichnungsnummer R03AR068087, dem Akademischen Anreicherungsfonds der University of Colorado School of Medicine und dem Gates Center for Regenerative Medicine . Diese Arbeit wurde auch von NIH / NCATS Colorado CTSA Grant Nummer UL1 TR001082 unterstützt. Der Inhalt ist die alleinige Verantwortung der Autoren und stellt nicht unbedingt offizielle NIH-Ansichten dar.

Materials

Scalpel handle McKesson MCK42332500
Needle holder Stoelting RS-7824
Adson tissue forceps Sklar 50-3048
Iris Scissors Sklar 47-1246
Rotary Tool Dremel 7700 Variable speed rotary tool 
Keyless Rotary Tool Chuck Dremel 4486
Dental Burs Dental Burs USA FG6 Round carbide bur, ≤2mm
Steinmann pins Simpex Medical T-078
Hair clippers Wahl  5537N
3-0 PGA surutes Oasis MV-J398-V
Sterile gauze 2×2" Covidien 441211
Povidone Iodine McKesson 922-00801
Sterile saline Vetone 510224
10 ml luer lock syringe Becton Dickinson 309604
23 gauge needle Becton Dickinson 305145
Isopropyl alcohol pads Dynarex 1113
Isoflurane IsoFlo 30125-2
Caliper Mitutoyo 500-196-30
Carprofen Rimadyl 27180
Buprenorphine Par Pharmaceuticals Inc NDC 42023-179
Fenestrated Surgical Drape McKesson 25-517
Surgical Gloves Uline S-20204
#15 Scalpel Blade Aven 44044
9mm wound clips Fine Science Tools 12032-09
Reflex clip applier World Precision Instruments 500345
Absorbant underpads McKesson MON 43723110
Tec 3 Iso Vaporizer  VetEquip 911103 
Germinator 500 Braintree Scientific GER 5287-120V
Warm water recirculator Kent Scientific TP-700
Absorbent Underpads Medline Industries MSC281230

References

  1. Mann, D. C., Rajmaira, S. Distribution of physeal and nonphyseal fractures in 2,650 long-bone fractures in children aged 0-16 years. J Pediatr Orthop. 10 (6), 713-716 (1990).
  2. Browne, L. P., et al. Community-acquired staphylococcal musculoskeletal infection in infants and young children: necessity of contrast-enhanced MRI for the diagnosis of growth cartilage involvement. AJR Am J Roentgenol. 198 (1), 194-199 (2012).
  3. Weitao, Y., Qiqing, C., Songtao, G., Jiaqiang, W. Epiphysis preserving operations for the treatment of lower limb malignant bone tumors. Eur J Surg Oncol. 38 (12), 1165-1170 (2012).
  4. Butler, M. S., Robertson, W. W., Rate, W., D’Angio, G. J., Drummond, D. S. Skeletal sequelae of radiation therapy for malignant childhood tumors. Clin Orthop Relat Res. (251), 235-240 (1990).
  5. Shapiro, F. Longitudinal growth of the femur and tibia after diaphyseal lengthening. J Bone Joint Surg Am. 69 (5), 684-690 (1987).
  6. Kronenberg, H. M. Developmental regulation of the growth plate. Nature. 423 (6937), 332-336 (2003).
  7. Dodwell, E. R., Kelley, S. P. Physeal fractures: basic science, assessment and acute management. Orthopaedics and Trauma. 25 (5), 377-391 (2011).
  8. Khoshhal, K. I., Kiefer, G. N. Physeal bridge resection. J Am Acad Orthop Surg. 13 (1), 47-58 (2005).
  9. Hasler, C. C., Foster, B. K. Secondary tethers after physeal bar resection: a common source of failure. Clin Orthop Relat Res. (405), 242-249 (2002).
  10. Xian, C. J., Zhou, F. H., McCarty, R. C., Foster, B. K. Intramembranous ossification mechanism for bone bridge formation at the growth plate cartilage injury site. J Orthop Res. 22 (2), 417-426 (2004).
  11. Chen, J., et al. Formation of tethers linking the epiphysis and metaphysis is regulated by vitamin d receptor-mediated signaling. Calcif Tissue Int. 85 (2), 134-145 (2009).
  12. Coleman, R. M., Schwartz, Z., Boyan, B. D., Guldberg, R. E. The therapeutic effect of bone marrow-derived stem cell implantation after epiphyseal plate injury is abrogated by chondrogenic predifferentiation. Tissue Eng Part A. 19 (3-4), 475-483 (2013).
  13. Chung, R., Foster, B. K., Xian, C. J. The potential role of VEGF-induced vascularisation in the bony repair of injured growth plate cartilage. J Endocrinol. 221 (1), 63-75 (2014).
  14. Coleman, R. M., et al. Characterization of a small animal growth plate injury model using microcomputed tomography. Bone. 46 (6), 1555-1563 (2010).
  15. Macsai, C. E., Hopwood, B., Chung, R., Foster, B. K., Xian, C. J. Structural and molecular analyses of bone bridge formation within the growth plate injury site and cartilage degeneration at the adjacent uninjured area. Bone. 49 (4), 904-912 (2011).
  16. Su, Y. W., et al. Neurotrophin-3 Induces BMP-2 and VEGF Activities and Promotes the Bony Repair of Injured Growth Plate Cartilage and Bone in Rats. J Bone Miner Res. , (2016).
  17. Zhou, F. H., Foster, B. K., Sander, G., Xian, C. J. Expression of proinflammatory cytokines and growth factors at the injured growth plate cartilage in young rats. Bone. 35 (6), 1307-1315 (2004).
  18. Sayers, D., Volpin, G., Bentley, G. The demonstration of bone and cartilage remodelling using alcian blue and hematoxylin. Biotechnic & Histochemistry. 63 (1), 59-63 (1988).
  19. Riederer, M. S., Requist, B. D., Payne, K. A., Way, J. D., Krebs, M. D. Injectable and microporous scaffold of densely-packed, growth factor-encapsulating chitosan microgels. Carbohydrate Polymers. 152, 792-801 (2016).
  20. Lee, M. A., Nissen, T. P., Otsuka, N. Y. Utilization of a murine model to investigate the molecular process of transphyseal bone formation. J Pediatr Orthop. 20 (6), 802-806 (2000).
  21. Coleman, R. M., et al. Characterization of a small animal growth plate injury model using microcomputed tomography. Bone. 46 (6), 1555-1563 (2010).
  22. Lee, S. U., Lee, J. Y., Joo, S. Y., Lee, Y. S., Jeong, C. Transplantation of a Scaffold-Free Cartilage Tissue Analogue for the Treatment of Physeal Cartilage Injury of the Proximal Tibia in Rabbits. Yonsei Med J. 57 (2), 441-448 (2016).
  23. Planka, L., et al. Nanotechnology and mesenchymal stem cells with chondrocytes in prevention of partial growth plate arrest in pigs. Biomed Pap Med Fac Univ Palacky Olomouc Czech Repub. 156 (2), 128-134 (2012).
  24. Hansen, A. L., et al. Growth-plate chondrocyte cultures for reimplantation into growth-plate defects in sheep. Characterization of cultures. Clin Orthop Relat Res. (256), 286-298 (1990).
  25. Cepela, D. J., Tartaglione, J. P., Dooley, T. P., Patel, P. N. Classifications In Brief: Salter-Harris Classification of Pediatric Physeal Fractures. Clin Orthop Relat Res. , (2016).
  26. Salter, R. B., Harris, W. R. Injuries Involving the Epiphyseal Plate. The Journal of Bone & Joint Surgery. 83 (11), 1753 (2001).
  27. Chung, R., Foster, B. K., Zannettino, A. C., Xian, C. J. Potential roles of growth factor PDGF-BB in the bony repair of injured growth plate. Bone. 44 (5), 878-885 (2009).
  28. Fischerauer, E., Heidari, N., Neumayer, B., Deutsch, A., Weinberg, A. M. The spatial and temporal expression of VEGF and its receptors 1 and 2 in post-traumatic bone bridge formation of the growth plate. J Mol Histol. 42 (6), 513-522 (2011).
  29. Chung, R., Cool, J. C., Scherer, M. A., Foster, B. K., Xian, C. J. Roles of neutrophil-mediated inflammatory response in the bony repair of injured growth plate cartilage in young rats. J Leukoc Biol. 80 (6), 1272-1280 (2006).
  30. Chung, R., et al. Roles of Wnt/beta-catenin signalling pathway in the bony repair of injured growth plate cartilage in young rats. Bone. 52 (2), 651-658 (2013).
  31. Zhou, F. H., Foster, B. K., Zhou, X. F., Cowin, A. J., Xian, C. J. TNF-alpha mediates p38 MAP kinase activation and negatively regulates bone formation at the injured growth plate in rats. J Bone Miner Res. 21 (7), 1075-1088 (2006).
  32. Arasapam, G., Scherer, M., Cool, J. C., Foster, B. K., Xian, C. J. Roles of COX-2 and iNOS in the bony repair of the injured growth plate cartilage. J Cell Biochem. 99 (2), 450-461 (2006).
check_url/kr/55571?article_type=t

Play Video

Cite This Article
Erickson, C. B., Shaw, N., Hadley-Miller, N., Riederer, M. S., Krebs, M. D., Payne, K. A. A Rat Tibial Growth Plate Injury Model to Characterize Repair Mechanisms and Evaluate Growth Plate Regeneration Strategies. J. Vis. Exp. (125), e55571, doi:10.3791/55571 (2017).

View Video