Summary

골지 - 콕스 방법을 이용한 고령의 해마 상피 세포의 수지상 돌기 복잡성 평가

Published: June 22, 2017
doi:

Summary

여기서 우리는 Golgi-Cox 프로토콜에 대해 자세히 설명합니다. 이 신뢰할 수있는 조직 얼룩 방법은 최소한의 문제 해결과 함께 해마 및 전체 뇌에 걸쳐 cytoarchitecture의 높은 품질 평가를 허용합니다.

Abstract

수상 돌기는 흥분성 시냅스를 포함하는 신경 돌기 샤프트의 돌기입니다. 해마 내의 신경성 수상 돌기의 형태 및 분지 변이는인지 및 기억 형성에 관여한다. Golgi 염색에 대한 몇 가지 접근법이 있으며, 모두 수지상 세포의 형태 학적 특성을 결정하고 명확한 배경을 생성하는데 유용합니다. 현재 Golgi-Cox 방법 (상업적 골지 염색 키트와 함께 제공되는 프로토콜의 약간의 변형)은 비교적 낮은 용량의 화학 요법 약물 인 5- 플루오로 우라실 (5-Fu)이 수지상 형태에 어떻게 영향을 미치는지 평가하기 위해 고안되었다 , 척추의 수 및 해마 안의 정강이 형성의 복잡성과 관련이 있습니다. 5-Fu는 수지상 복합체를 상당히 변조 시켰고, 해마 전역에서 척추 밀도를 영역 특이 적 방식으로 감소시켰다. 제시된 데이터는 Golgi 염색 방법이CA1, CA3 및 해마의 치아 이랑 (dentate gyrus)에서 성숙한 뉴런을 fectively 염색했다. 이 프로토콜은 각 단계의 세부 사항을보고하여 다른 연구자가 뇌 전체에 걸쳐 조직을 안정적으로 얼룩지게하고 고품질의 결과와 최소한의 문제 해결을 가능하게합니다.

Introduction

Dendrites는 presynaptic 입력을 받아 처리하는 뉴런의 가장 큰 부분입니다 1 . 그들의 수지상 프로세스는 복잡한 기하학을 가지고 있는데, 근위부 가지가 원위부 가지보다 더 큰 직경을 가지고 있습니다. 수상 돌기가 발달함에 따라 돌기 arborization이라고하는 과정에서 다른 뉴런과 여러 연결을 형성합니다. 이 분기의 범위와 패턴은 수상 돌기가 적절하게 처리 할 수있는 시냅스 입력의 양을 결정합니다 2 .

수상 돌기 arborization은 활동 의존성 소성과 연결 회로의 적절한 개발을 위해 필요한 과정입니다. 확장, 후퇴, 분지 및 시냅스 생성은 내인성 유전 프로그램 및 외인성 요인으로부터의 영향을 포함하는 복잡한 과정이다. 해마 내의 신경성 수상 돌기의 형태 및 분지 변화는인지 및 기억 형성에 관련되어있다돌기 복잡성의 변화는 병리 생리학 및 행동 변화와 관련이있다 5. 이상은 X- 증후군 및 다운 증후군을 포함한 여러 질병 상태와 관련이있다.

수상 돌기 (dendritic spines)는 중추 신경계 내에서 흥분성 입력을받는 돌기 아버의 특화된 세포 내 구획입니다. 각 계통의 크기와 모양에 따라 3 가지 형태의 계통 분류가 있습니다. 1) 버섯 계통은 다른 계통보다 글루타메이트 수용체가 많은 복잡한 계피 밀도를 가지고 있습니다. 2) 줄기가없는 멍한 등뼈; 3) 길고 좁은 줄기와 구상 머리로 구성된 얇은 등뼈 8 . 돌기 척추 부피는 부분적으로 사용되어 얇은 척추가 일반적으로 더 작습니다 (0.01 μm 3 </sup>)를 버섯 등뼈 (0.8 μm 3 )와 비교 9,10 . 등뼈는 성숙과 함께 안정됩니다. 예를 들어, 얇은 등뼈는 며칠 후에 수축되거나 버섯 등뼈로 발전합니다. 양자 택일로, 버섯 등뼈는 상대적으로 안정하고 오랜 기간 생존 할 수 있습니다. 연결 연결의 강도는 등뼈 및 / 또는 그들의 볼륨 11,12,13의 수를 기반으로 생각됩니다.

고전적인 Golgi 염색 방법과 그보다 현대적인 변형 모두 돌기의 척추 형태와 밀도를 검사하는데 유용합니다. Golgi 염색의 한 가지 독특한 측면은 무작위로 총 뉴런의 약 5 %를 얼룩이 지므로 개별 뉴런의 추적이 가능합니다 14 , 15 . 골지기의 정확한 메카니즘얼룩 개별 뉴런은 여전히 ​​알려져 있지 않습니다, 방법의 원리는은 크로메이트 (Ag 2 CrO 4 ) 16 , 17 의 결정화를 기반으로합니다. Golgi 방법에는 세 가지 주요 유형이 있습니다 : 빠른 골지, Golgi-Cox 및 Golgi-Kopsch 18 , 19 . 세 가지 방법 모두 몇 일에서 몇 달 동안 크롬 염에서 초기 인큐베이션 단계로 시작하지만 몇 가지 주요 차이점이 있습니다. 빠른 Golgi는 첫 번째 단계에서 오스뮴 tetroxide를 사용하는 반면, Golgi-Kopsch는 paraformaldehyde를 포함합니다. rapid-Golgi와 Golgi-Kopsch에서의 염색은 약 7 일 동안 1 ~ 2 % 질산은 용액에서 배양한다. Golgi-Cox 방법은 질산은 대신에 염화 수은과 중크롬산 칼륨을 사용하며 2 ~ 4 주간의 함침 시간이 있습니다. 그 다음 조직을 절편 화하고 희석 된 암모니아염료를 제거하기위한 사진 용 정착액이 뒤 따른다. 세 가지 유형 중에서 골지 – 콕스 (Golgi-Cox) 방법은 배경 간섭이없는 돌기 아버를 염색하는 데 가장 좋은 것으로 여겨지는데 부분적으로는 크리스탈 아티팩트가 조직 표면에 발생하지 않기 때문에 (빠른 골지 방법과 달리) 17 , 20 , 21 .

현재의 방법은 상업적 골지 염색 키트와 함께 제공되는 프로토콜의 약간의 변형이며 5-Fu의 비교적 적은 양이 수지상 형태 학적 특성 및 척추 밀도에 어떻게 영향을 미치는지 평가하기 위해 고안되었다. 획득 된 모든 데이터는 화학 요법 치료가 어떻게 신경 회로에 영향을 미치는지에 대한 더 많은 통찰력을 제공 할 수 있습니다.

Protocol

실험은 UAMS 기관 동물 관리 및 사용위원회 (Institutional Animal Care and Use Committee)가 승인 한 윤리적 기준에 따라 수행되었습니다. 1. 동물과 5-Fu 주사 패러다임 6 개월 된 수컷 C57Bl6 / J 야생형 마우스를 구입하여 1 살이 될 때까지 일정한 12 시간의 명암주기하에 보관하십시오. 0.9 % 살균 식염수로 5 푸를 희석하십시오. 마우스 당 필요한 용량으로 60 mg / kg을 사용하십?…

Representative Results

수상 돌기 arborization에 5 -Fu 처리의 효력 및 Golgi 얼룩 두뇌 단면의 해마에있는 복합성은 상업적으로 이용 가능한 화상 진찰 소프트웨어를 사용하여 정량되고 추적되었다. 추적 후, 돌기 arborization, 척추 밀도 및 척추 형태학은 Sholl 분석 및 수지상 복합 지수 (DCI)를 사용하여 분석되었습니다. Sholl 분석은 수지상 세포 형태를 결정하는 데 사용할 수있는 정량 분석 ​​방법입?…

Discussion

보다 현대적인 기술에 비해 Golgi-Cox 방법은 척추 형태를 검사하는 데 선호되는 몇 가지 장점이 있습니다. 1) 염색은 본질적으로 모든 조직에 사용할 수 있습니다. 2) 기본적인 광학 현미경 설정만으로 모든 것이 가능합니다. 3) Golgi-Cox 이미징은 공 촛점 영상보다 빠르다. 4) Golgi 염색 된 절편은 형광 라벨이 부착 된 샘플보다 몇 개월에서 몇 년 더 오래 실행 가능하다. 이러한 장점을 가지고 있어도 Gol…

Disclosures

The authors have nothing to disclose.

Acknowledgements

이 연구는 NIH P20 GM109005 (ARA) 및 Translational Neuroscience IDeA 프로그램 상 P30 GM110702 센터의 파일럿 보조금에 의해 지원되었습니다.

Materials

superGolgi Kit  Bioenno Lifesciences 30100  Contains hazardous materials. 
PBS 10X powder concentrate Fisher  BP665-1
Triton X-100 Sigma 9002-93-1
Permount  Fisher  SP 15-100
Slide cover  Fisher  12-546-14
7mL Transfer pipette  Globe Scientific  135030
10 mL Falcon tubes  BD Biosciences  352099
Foil  Fisher  01-213-105
12-well plate  BD Biosciences  353043
200 proof Ethanol  Pharmco-AAPER 111000200
Xylene  Acros Organics  1330-20-7 Hazardous. 
Permabond 200 Permabond LLC GF2492
25 mL serological pipette Sigma SIAL1489
Parafilm Midsci HS234526C 
Vibratome  World Precision Instruments  NVSLM1
C57Bl/6 Male Mice  The Jackson Laboratory  000664
Axio Imager 2 ZEISS Multiple components, see website for details. 
AxioCam MRc Camera ZEISS 426508-9902-000
Staining Dish , Green Tissue-Tek 62541-12
Staining Dish Set  Electron Microscopy Sciences  70312-20
Motorized Pipet Filler  Fisher  03-692-168
Neurolucida  mbf Bioscience 
Neurolucida Explorer  mbf Bioscience 
Prism  GraphPad

References

  1. Stuart, G. J., Spruston, N. Dendritic integration: 60 years of progress. Nat Neurosci. 18 (12), 1713-1721 (2015).
  2. Jan, Y. N., Jan, L. Y. Branching out: mechanisms of dendritic arborization. Nat Rev Neurosci. 11 (5), 316-328 (2010).
  3. Kulkarni, V. A., Firestein, B. L. The dendritic tree and brain disorders. Mol Cell Neurosci. 50 (1), 10-20 (2012).
  4. Kasai, H. Structural Dynamics of Dendritic Spines in Memory and Cognition. Trends Neurosci. 33 (3), 121-129 (2010).
  5. von Bohlen Und Halbach, O. Structure and function of dendritic spines within the hippocampus. Ann Anat. 191 (6), 518-531 (2009).
  6. Wayman, G. A., et al. Activity-dependent dendritic arborization mediated by CaM-kinase I activation and enhanced CREB-dependent transcription of Wnt-2. Neuron. 50 (6), 897-909 (2006).
  7. Bourne, J. N., Harris, K. M. Balancing structure and function at hippocampal dendritic spines. Ann Rev Neurosci. 31, 47-67 (2008).
  8. Lai, K. O., Ip, N. Y. Structural plasticity of dendritic spines: the underlying mechanisms and its dysregulation in brain disorders. Biochim Biophys Acta. 1832 (12), 2257-2263 (2013).
  9. Harris, K. M. Structure, development, and plasticity of dendritic spines. Current Op Neurobiol. 9 (3), 343-348 (1999).
  10. Harris, K. M., Kater, S. B. Dendritic spines: cellular specializations imparting both stability and flexibility to synaptic function. Ann Rev Neurosci. 17, 341-371 (1994).
  11. Leuner, B., Shors, T. J. Stress, anxiety, and dendritic spines: what are the connections. 신경과학. 251, 108-119 (2013).
  12. Harris, K. M., Fiala, J. C., Ostroff, L. Structural changes at dendritic spine synapses during long-term potentiation. Philos Trans R Soc Lond B Biol Sci. 358 (1432), 745-748 (2003).
  13. Kasai, H., Matsuzaki, M., Noguchi, J., Yasumatsu, N., Nakahara, H. Structure-stability-function relationships of dendritic spines. Trends Neurosci. 26 (7), 360-368 (2003).
  14. Das, G., Reuhl, K., Zhou, R. The Golgi-Cox method. Methods Mol Biol. 1018, 313-321 (2013).
  15. Koyama, Y. The unending fascination with the Golgi method. OA Anat. 1 (3), 24 (2013).
  16. Pasternak, J. F., Woolsey, T. A. On the “selectivity” of the Golgi-Cox method. J Comp Neurol. 160 (3), 307-312 (1975).
  17. Friedland, D. R., Los, J. G., Ryugo, D. K. A modified Golgi staining protocol for use in the human brain stem and cerebellum. J Neurosci Methods. 150 (1), 90-95 (2006).
  18. Rosoklija, G., et al. Optimization of Golgi methods for impregnation of brain tissue from humans and monkeys. J Neurosci Methods. 131 (1-2), 1-7 (2003).
  19. de Castro, F., Lopez-Mascaraque, L., De Carlos, J. A. Cajal: lessons on brain development. Brain Res Rev. 55 (2), 481-489 (2007).
  20. Gabbott, P. L., Somogyi, J. The “single” section Golgi-impregnation procedure: methodological description. J Neurosci Methods. 11 (4), 221-230 (1984).
  21. Zaqout, S., Kaindl, A. M. Golgi-Cox staining step by step. Front Neuroanat. 10 (38), (2016).
  22. . Vibroslice NVSL & Vibroslice NVSLM123 Available from: https://www.wpiinc.com/clientuploads/pdf/NVSL_NVSLM1_IM.pdf (2000)
  23. . . Neurolucida 11.03. , (2017).
  24. Sholl, D. A. Dendritic organization in the neurons of the visual and motor cortices of the cat. J Anat. 87 (4), 387-406 (1953).
  25. Pillai, A. G., et al. Dendritic morphology of hippocampal and amygdalar neurons in adolescent mice is resilient to genetic differences in stress reactivity. PLoS ONE. 7 (6), (2012).
  26. Morley, B. J., Mervis, R. F. Dendritic spine alterations in the hippocampus and parietal cortex of alpha7 nicotinic acetylcholine receptor knockout mice. 신경과학. 233, 54-63 (2013).
  27. Titus, A. D., et al. Hypobaric hypoxia-induced dendritic atrophy of hippocampal neurons is associated with cognitive impairment in adult rats. 신경과학. 145 (1), 265-278 (2007).
  28. Groves, T. R., et al. 5-Fluorouracil chemotherapy upregulates cytokines and alters hippocampal dendritic complexity in aged mice. Behavioral Brain Research. 316, 215-224 (2017).
  29. Risher, W. C., Ustunkaya, T., Singh Alvarado, J., Eroglu, C. Rapid Golgi analysis method for efficient and unbiased classification of dendritic spines. PloS One. 9 (9), (2014).
  30. Kaufmann, W. E., Moser, H. W. Dendritic anomalies in disorders associated with mental retardation. Cerebral cortex. 10 (10), 981-991 (2000).
  31. Kulkarni, V. A., Firestein, B. L. The dendritic tree and brain disorders. Mol Cell Neurosci. 50 (1), 10-20 (2012).
check_url/kr/55696?article_type=t

Play Video

Cite This Article
Groves, T. R., Wang, J., Boerma, M., Allen, A. R. Assessment of Hippocampal Dendritic Complexity in Aged Mice Using the Golgi-Cox Method. J. Vis. Exp. (124), e55696, doi:10.3791/55696 (2017).

View Video