Summary

마우스 배아 신장의 해부 및 배양

Published: May 17, 2017
doi:

Summary

이 프로토콜은 마우스 배아에서 metanephric의 기초를 분리하고 배양하는 방법을 설명합니다.

Abstract

이 프로토콜의 목표는 마우스 metanephric 기초의 해부, 격리 및 문화에 대한 방법을 설명하는 것입니다.

포유류 신장이 발달하는 동안 두 개의 전구 세포 조직, 즉 ureteric bud와 metanephric mesenchyme은 세포 기작을 전달하고 상호 작용하여 결국 포집 시스템과 신장의 네프론을 형성합니다. 포유류 배아가 자궁 내에서 자라며 관찰자가 접근하기 어렵 기 때문에 장기 배양이 개발되었습니다. 이 방법을 사용하면 신장 조직 형성 과정에서 상피 간엽 상호 작용과 세포 행동을 연구 할 수 있습니다. 또한 선천성 신장 및 비뇨 생식기 기형의 기원을 조사 할 수 있습니다. 조심스럽게 해부 된 후, metanephric 기초 물질은 배양 배지에 떠있는 필터로 옮겨져 며칠 동안 세포 배양기에 보관 될 수 있습니다. 그러나 조건은 다음과 같습니다.인공이며 조직의 신진 대사에 영향을 줄 수 있습니다. 또한, 시험 물질의 침투는 체외 이식편에 존재하는 세포 외 기질 및 기저막으로 인해 제한 될 수있다.

기관 문화의 한 주요 이점은 실험자가 기관에 직접 접근 할 수 있다는 것입니다. 이 기술은 저렴하고 간단하며 생물학적 활성 물질의 첨가, 유전 변이의 연구, 진보 된 영상 기술의 적용과 같은 많은 수정을 가능하게합니다.

Introduction

The mammalian kidney is derived from two primordial structures with mesodermal origin: the tubular epithelial ureteric bud and the metanephric mesenchyme. During nephrogenesis, the ureteric bud invades the metanephric mesenchyme and branches to form the collecting system. The metanephric mesenchyme gives rise to the epithelial elements of the nephrons. These processes occur in a precisely timed and spatially coordinated manner and are initiated by reciprocal inductive mechanisms. Both tissue components communicate and affect the other’s cell morphogenesis.

In the 1920s, it was Boyden who performed the in vivo obstruction of the mesonephric duct in chicken, providing the first indication of inductive interactions as separated nephric blastema fail to differentiate1. At about the same time, the first successful attempts to culture chicken nephric rudiments in a hanging drop were published. Subsequently, the organ culture was developed to study tissue interactions in mammalian organogenesis. In the 1950s, Grobstein developed a technique in which metanephric rudiments could be cultured on a filter. This technique was modified by Saxén, who placed the filter on a Trowell-type screen in a culture dish1. Over the years, many modifications and applications for organ culture have emerged. The method described here is based on Saxén’s technique but is simplified, as the filters float free on the medium and the diameter of the culture well only slightly exceeds the diameter of the filter, limiting unwanted movement of the filter.

Whole-organ culture is a classical, cheap, and simple but powerful tool to investigate cellular processes and intercellular communication during organogenesis. Organ culture allows for treatment with biological agents, such as growth factors, antibodies, antisense oligonucleotides, viruses, and peptides, as well as with pharmaceutical compounds and other chemicals. Also, gene function may be studied using explants derived from genetically modified mice or using inducible gene inactivation technology, such as the Cre-loxP system. This allows for the study of genetic mutations that cause embryonic lethality prior to the development of the kidney. Organ culture can also be combined with fluorescent tagging for gene function or lineage tracing and modern imaging techniques, which enable real-time monitoring of cell behavior2.

In the specific example provided here, the effect of EphrinB2-activated Eph-receptor signaling on the branching morphology of the ureteric bud was investigated. The morphology of the EphA4/EphB2 double-knockout mice suggested several severe defects in kidney development, which were detectable as early as embryonic day 11 (E11) and involved the ureteric bud, the ureter, and the common nephric duct3. Signaling via Eph receptors requires the clustering of the ligand-receptor dimer4. To over-activate Eph signaling, the kidney rudiments from E11.5 mouse embryos were cultured in the presence of clustered recombinant EphrinB2-Fc. EphrinB2 is a known ligand for the EphA4 receptor, which is expressed in the ureteric bud tips3.

Protocol

마우스는 스웨덴의 규정 및 EU 법령 (2010 / 63 / EU)에 따라 유지 관리되었습니다. 모든 절차는 스웨덴 윤리위원회 (C79 / 9, C248 / 11 및 C135 / 14 허가)의 지침에 따라 수행되었습니다. 동물과 관련된 하이델베르그 대학의 절차는 하이델베르그 대학의 Regierungspräsidium Karlsruhe와 Animal Welfare Officers에 의해 승인되었습니다. 1. 시약 및 시약의 준비 참고 : 오염을 최소?…

Representative Results

Metanephric kidn anlagen은 E11.5에서 임신 한 Black-6 근친 교배 마우스에서 추출하여 배양 하였다. 3 일 후, ureteric bud는 5 번까지 분지되었고, 그 결과 초기 T 자 형태의 ureteric bud가 분출되었다. 각 체외 이식편을 촬영하고 분지 생성량을 결정하고 분지 당 종말점 수를 계산하기 위해 분절 수와 종점을 정량화했습니다 ( 그림 1 ). ImageJ ( 제 4 세대), 제 4 세대는 처…

Discussion

이 원고는 마우스 배아에서 발생하는 metanephric anlagen을 분리하고 장기 기초를 배양하는 방법을 설명합니다. 이 방법은 Grobstein 8 과 Saxén 9 , 10 에 의해 개발 된 표준 기법이며 많은 다른 사람들에 의해 수정되고 수정되었습니다 11 , 12 . 이 방법의 성공은 주로 절개의 지속 기간과 장기간의 절?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

저자는 Leif Oxburgh와 Derek Adams에게 도움을 주신 Leif Oxburgh와 Stefan Wölfl 및 Ulrike Müller와 Saskia Schmitteckert, Julia Gobbert, Sascha Weyer 및 Viola Mayer에게 도움을 주신 데 대해 감사드립니다. 랩. 이 작품은 개발, 생물 학자의 회사 (CP) 에 의해 지원되었다 .

Materials

DMEM/F-12 Thermo Fisher Scientific 21331020
Penicillin-Streptomycin (10,000 U/mL) Thermo Fisher Scientific 15140148
GlutaMAX Supplement Thermo Fisher Scientific 35050061
DPBS, calcium, magnesium Thermo Fisher Scientific 14040117 use for dissection
holo-Transferrin human Sigma-Aldrich T0665
Insulin-Transferrin-Selenium (ITS -G) (100X) Thermo Fisher Scientific 41400045
Paraformaldehyde Sigma-Aldrich 158127
Amphotericin B solution Sigma-Aldrich A2942
Triton X-100 Sigma-Aldrich X100
Sodium azide Sigma-Aldrich S8032
Thimerosal Sigma-Aldrich T5125
Propyl gallate Sigma-Aldrich 2370
Mowiol 4-88 Sigma-Aldrich 81381
Glycerol Sigma-Aldrich G5516
Biotinylated Dolichorus Biflorus Agglutinin Vector Laboratories B-1035
Alexa488 conjugated Streptavidin Jackson Immuno Research 016-540-084
Recombinant Mouse Ephrin-B2 Fc Chimera Protein, CF R&D Systems 496-EB
Recombinant Human IgG1 Fc, CF R&D Systems 110-HG-100
Goat Anti-Human IgG Fc Antibody R&D Systems G-102-C
Phosphate buffered saline tablets Sigma-Aldrich P4417 use for fixation and immunostaining
Dumont #5, biologie
tips, INOX, 11cm
agnthos.se 0208-5-PS 2 pairs of forceps are needed
Iris scissors, straight, 12cm agnthos.se 03-320-120
Dressing Forceps,
straight, delicate, 13cm
agnthos.se 08-032-130
Petri dishes Nunclo Delta treated Thermo Fisher Scientific 150679
TMTP01300 Isopore Membrane Filter, polycarbonate, Hydrophilic, 5.0 µm, 13 mm, white, plain MerckMillipore TMTP01300
Nunclon Multidishes
4 wells, flat bottom
Sigma-Aldrich D6789-1CS
Microscope cover glass24x50mm thickn. No.1.5H 0.17+/-0.005mm nordicbiolabs 107222
Cover glasses No.1.5, 18x18mm nordicbiolabs 102032
Slides ~76x26x1, 1/2-w. ground plain nordicbiolabs 1030418
VWR Razor Blades VWR 55411-055
50 mL centrifuge tubes Sigma-Aldrich CLS430828
15 mL centrifuge tubes Sigma-Aldrich CLS430055
Whatman prepleated qualitative filter paper, Grade 113V, creped Sigma-Aldrich WHA1213125
Fixed stage research mircoscope Olympus BX61WI
Black 6 inbred mice, male, C57BL/6NTac Taconic B6-M
Black 6 inbred mice,female, C57BL/6NTac Taconic B6-F
Greenough Stereo Microscope Leica Leica S6 E

References

  1. Saxén, L. . Organogenesis of the kidney. Developmental and Cell Biology Series. 19, (1987).
  2. Lindström, N. O., et al. Integrated β-catenin, BMP, PTEN, and Notch signalling patterns the nephron. eLife. 4, e04000 (2015).
  3. Peuckert, C., et al. Multimodal Eph/Ephrin signaling controls several phases of urogenital development. Kidney Int. 90 (2), 373-388 (2016).
  4. Pasquale, E. B. Eph receptor signalling casts a wide net on cell behaviour. Nat Rev Mol Cell Biol. 6 (6), 462-475 (2005).
  5. Bonanomi, D., et al. Ret Is a Multifunctional Coreceptor that Integrates Diffusible- and Contact-Axon Guidance Signals. Cell. 148 (2), 568-582 (2012).
  6. Brown, A. C., et al. Isolation and Culture of Cells from the Nephrogenic Zone of the Embryonic Mouse Kidney. J Vis Exp. (50), e2555 (2011).
  7. Grobstein, C. Inductive interaction in the development of the mouse metanephros. J Exp Zool. 130, 319-340 (1955).
  8. Saxén, L., Toivonen, S. . Primary Embryonic Induction. , (1962).
  9. Saxén, L., Koskimies, O., Lahti, A., Miettinen, H., Rapola, J., Wartiovaara, J. Differentiation of kidney mesenchyme in an experimental model system. Adv Morphog. 7, 251-293 (1968).
  10. Dudley, A. T., Godin, R. E., Robertson, E. J. Interaction between FGF and BMP signaling pathways regulates development of metanephric mesenchyme. Genes Dev. 13, 1601-1613 (1999).
  11. Perälä, N., et al. Sema4C-Plexin B2 signalling modulates ureteric branching in developing kidney. Differentiation. 81 (2), 81-91 (2011).
  12. Thesleff, I., Ekblom, P. Role of transferrin in branching morphogenesis, growth and differentiation of the embryonic kidney. J Embryol exp Morph. 82, 147-161 (1984).
  13. Watanabe, T., Costantini, F. Real-time analysis of ureteric bud branching morphogenesis. Dev Biol. 271, 98-108 (2004).
  14. Sebinger, D. D. R., Unbekandt, M., Ganeva, V. V., Ofenbauer, A., Werner, C., Davies, J. A. A Novel, Low-Volume Method for Organ Culture of Embryonic Kidneys That Allows Development of Cortico-Medullary Anatomical Organization. PLoS One. 5 (5), e10550 (2010).
  15. Ekblom, P., Miettinen, A., Virtanen, I., Wahlström, T., Dawnay, A., Saxén, L. In vitro segregation of the metanephric nephron. Dev Biol. 84 (1), 88-95 (1981).
  16. Davies, J. A., Unbekandt, M. siRNA-mediated RNA interference in embryonic kidney organ culture. Methods Mol Biol. 886, 295-303 (2012).
  17. Saxén, L., Lehtonen, E. Embryonic kidney in organ culture. Differentiation. 36 (1), 2-11 (1987).
  18. Bard, J. B. L. The development of the mouse kidney embryogenesis writ small. Curr Opin Genet Dev. 2, 589-595 (1992).
  19. Davies, J. A. A method for cold storage and transport of viable embryonic kidney rudiments. Kidney Int. 70 (11), 2031-2034 (2006).
  20. Batourina, E., et al. Distal ureter morphogenesis depends on epithelial cell remodeling mediated by vitamin A and Ret. Nat Genet. 32 (1), 109-115 (2002).
check_url/kr/55715?article_type=t

Play Video

Cite This Article
Aresh, B., Peuckert, C. Dissection and Culture of Mouse Embryonic Kidney. J. Vis. Exp. (123), e55715, doi:10.3791/55715 (2017).

View Video