Summary

通过细胞外囊泡/外来体转移乳腺基质上皮细胞和乳腺腔细胞之间的乳腺形成能力

Published: June 03, 2017
doi:

Summary

该方案描述了从非贴壁/间充质乳腺上皮细胞中纯化,定量和表征细胞外囊泡(EVs)/外来体的方法,并使用它们将乳腺形成能力转移到乳腺上皮细胞。衍生自茎状乳腺上皮细胞的EVs /外来体可以将该细胞特性转移到摄入EV /外来体的细胞中。

Abstract

细胞可以通过外来体,含有蛋白质,脂质和核酸的〜100-nm胞外囊泡(EVs)进行通信。非贴壁/间充质乳腺上皮细胞(NAMEC)衍生的细胞外囊泡可以通过差异超速离心从NAMEC培养基中分离。基于它们的密度,EV可以通过110,000×g的超速离心纯化。可以使用连续密度梯度进一步分离来自超速离心的EV制剂,以防止可溶性蛋白质的污染。然后可以使用纳米颗粒跟踪分析进一步评估纯化的EV,其测量制剂中囊泡的大小和数量。尺寸范围为50至150nm的细胞外囊泡是外来体。 NAMEC衍生的EVs /外来体可以通过乳腺上皮细胞摄取,可以通过流式细胞术和共焦显微镜检测。一些乳腺干细胞性质( 乳腺形成能力)可以通过来自NAMEC的EVs /外来体从茎状NAMEC转移到乳腺上皮细胞。分离的原代EpCAM hi / CD49f细胞乳腺上皮细胞在移植到小鼠脂肪垫后不能形成乳腺,而EpCAM lo / CD49f基底乳腺上皮细胞在移植后形成乳腺。通过EpCAM hi / CD49f细胞乳腺上皮细胞摄取NAMEC衍生的EVs /外来体允许它们在移植到脂肪垫中之后产生乳腺。衍生自干样乳腺上皮细胞的EVs /外来体转移到EpCAM hi / CD49f细胞乳腺上皮细胞的乳腺形成能力。

Introduction

外来体可以通过在细胞之间转移膜和细胞质蛋白,脂质和RNA来介导细胞交流1 。已经证明外来体介导的通信涉及许多生理和病理过程( 抗原呈递,耐受性发展2和肿瘤进展3 )。外来体通常具有与释放它们的源细胞相似的内容。因此,外来体可以从源细胞携带特定的细胞特性,并将这些性质转移到摄取它们的细胞中。

外来体是50至150纳米的双层膜囊泡,并呈现特异性标记( 例如 CD9,CD81,CD63,HSP70,Alix和TSG101)。因此,外来体必须通过不同方面的各种方法来表征。透射电子显微镜可用于观察膜囊泡如外来体4,5 。纳米粒子跟踪分析(NTA)和动态光散射分析(DLS)用于测量纯化外来体的大小和数量4 。可以通过密度梯度验证外来体的脂质膜含量。染色体标志物,例如CD9,CD81,CD63,HSP70,Alix和TSG101,6,7可以通过Western印迹法测定。

乳腺基底细胞在植入脂肪垫时具有产生乳腺的能力,而腔细胞不能8,9,10 。因此,乳腺基底细胞也称为乳腺再生单位。通过使用乳腺基底细胞和腔细胞模型,可以检测EVs /外来体在不同细胞群体之间转运细胞特征的能力。这个工作证明了通过使用源自乳腺基底上皮细胞的EVs /外来体将腺体形成能力从乳腺基底上皮细胞转移到乳腺腔上皮细胞的方法。乳腺上皮细胞摄取基底细胞分泌的EV /外来体后获得基础细胞特性,然后形成乳腺。

Protocol

所有涉及动物的研究均符合动物保护机构委员会批准的方案。 细胞外囊泡/外来体分离和鉴定培养乳腺上皮基底细胞NAMEC4,用500mL MCDB 170,pH 7.4 + 500mL DMEM / F12与碳酸氢钠(0.2438%)制备的新鲜无血清培养基; EGF(5 ng / mL);氢可替康(0.5μg/ mL);胰岛素(5μg/ mL);牛垂体提取物(BPE;35μg/ mL);和GW627368X(1μg/ mL)。 用血细胞计数器计数细胞后,在第0天将1.2×10 6?…

Representative Results

由于已经显示阻断PGE 2 / EP 4信号传导从乳腺基底样干细胞4引发EV /外来体释放,这项工作提出了从乳腺上皮基底细胞(NAMEC)培养物中分离诱导的EVs /外来体的方法。由于NAMECs在无血清培养基中培养,所以不存在来自血清13的预先存在的EV /外来体。对于在含有血清的培养基中培养的细胞,培养基中预先存在的外来体必须通…

Discussion

外来体通常携带释放它们的细胞的特征,并且释放的外来体的量可以由刺激诱导4 。可以收集细胞的培养基并进行差异超速离心用于EV /外来物质收集( 图1 )。目前对于分离EV /外来体的理想方法目前尚无普遍的共识。这里使用的最佳方法已经由下游应用14确定 。超速离心是分离EV /外来体的相对快速的方法,可以保护EV /外来体的生物活性?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了国家卫生研究机构(05A1-CSPP16-014,HJL)和科技部(MOST 103-2320-B-400-015-MY3,HJL)的资助。

Materials

MCDB 170  USBiological M2162
DMEM/F12 Thermo 1250062
Optima L-100K ultracentrifuge Beckman 393253
SW28 Ti Rotor Beckman 342204
SW41 Rotor Beckman 331306
NANOSIGHT LM10 Malvern NANOSIGHT LM10 for nanoparticle tracking analysis (NTA)
Optiprep  Sigma-Aldrich D1556 60% (w/v) solution of iodixanol in water (sterile).
CD81 antibody GeneTex GTX101766 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CD9 antibody GeneTex GTX100912 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CD63 antibody Abcam Ab59479 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
TSG101 antibody GeneTex GTX118736 1:1000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
GAPDH GeneTex GTX100118 1:6000 in 5% w/v nonfat dry milk, 1X TBS, 0.1% Tween 20 at 4°C, overnight 
CFSE (carboxyfluorescein succinimidyl diacetate ester) Thermo V12883
FACSCalibur BD Biosciences fluorescence cell analyzer
collagenase Type IV  Thermo 17104019
trypsin Thermo 27250018
 ITS Sigma-Aldrich I3146 a mixture of recombinant human insulin, human transferrin, and sodium selenite
accutase ebioscience 00-4555-56 a natural enzyme mixture with proteolytic and collagenolytic enzyme activity
dispase  STEMCELL 7913 5 mg/ml = 5 U/ml
anti-CD49f antibody Biolegend 313611 1:50
anti-EpCAM antibody Biolegend 118213 1:200
FACSAria BD Biosciences cell sorter
carmine alum Sigma-Aldrich C1022
human mammary epithelial cells (HMLE cells, NAMECs) gifts from Dr. Robert Weinberg
permount Thermo Fisher Scientific  SP15-500
sodium bicarbonate Zymeset  BSB101
EGF Peprotech AF-100-015
Hydrocoritisone Sigma-Aldrich SI-H0888
Insulin  Sigma-Aldrich SI-I9278
BPE (bovine pituitary extract) Hammod Cell Tech  1078-NZ
GW627368X  Cayman 10009162
15-cm culture dish Falcon  353025
table-top centrifuge Eppendrof  Centrifuge 3415R
ultracentrifuge tube Beckman 344058
PBS (Phosphate-buffered saline)  Corning 46-013-CM
BCA Protein Assay Thermo Fisher Scientific  23228
Transmission Electron Microscopy Hitachi HT7700
gelatin  STEMCELL 7903
10-cm culture dish Falcon  353003
6-well culture dish Corning 3516
female C57BL/6 mice NLAC (National Laboratory Animal Center
FBS (Fetal Bovine Serum) BioWest  S01520
gentamycin Thermo Fisher Scientific  15710072
Pen/Strep Corning 30-002-Cl
DNase I 5PRIMER 2500120
isofluorane  Halocarbon NPC12164-002-25
formaldehyde MACRON H121-08
EtOH (Ethanol) J.T. Baker 800605
glacial acetic acid Panreac 131008.1611
aluminum potassium sulfate Sigma-Aldrich 12625
Xylene  Leica 3803665
0.22 μm membranes Merck Millipore Millex-GP
AUTOCLIP Wound Clips, 9 mm BD Biosciences 427631
AUTOCLIP Wound Clip Applier BD Biosciences 427630
CellMask™ Deep Red Thermo Fisher Scientific  C10046 plasma membrane stain

References

  1. Simons, M., Raposo, G. Exosomes–vesicular carriers for intercellular communication. Curr Opin Cell Biol. 21 (4), 575-581 (2009).
  2. Théry, C., Ostrowski, M., Segura, E. Membrane vesicles as conveyors of immune responses. Nat Rev Immunol. 9 (8), 581-593 (2009).
  3. Boelens, M., et al. Exosome Transfer from Stromal to Breast Cancer Cells Regulates Therapy Resistance Pathways. Cell. 159 (3), 499-507 (2014).
  4. Lin, M. C., et al. PGE2 /EP4 Signaling Controls the Transfer of the Mammary Stem Cell State by Lipid Rafts in Extracellular Vesicles. Stem Cells. , (2016).
  5. Théry, C., Amigorena, S., Raposo, G., Clayton, A. Isolation and characterization of exosomes from cell culture supernatants and biological fluids. Curr Protoc Cell Biol. , (2006).
  6. György, B., et al. Membrane vesicles, current state-of-the-art: emerging role of extracellular vesicles. Cell Mol Life Sci. 68 (16), 2667-2688 (2011).
  7. Olver, C., Vidal, M. Proteomic analysis of secreted exosomes. Subcell Biochem. 43, 99-131 (2007).
  8. Shackleton, M., et al. Generation of a functional mammary gland from a single stem cell. Nature. 439 (7072), 84-88 (2006).
  9. Prater, M. D., et al. Mammary stem cells have myoepithelial cell properties. Nat Cell Biol. 16 (10), 942-950 (2014).
  10. Stingl, J., et al. Purification and unique properties of mammary epithelial stem cells. Nature. 439 (7079), 993-997 (2006).
  11. Gardiner, C., Ferreira, Y. J., Dragovic, R. A., Redman, C. W., Sargent, I. L. Extracellular vesicle sizing and enumeration by nanoparticle tracking analysis. J Extracell Vesicles. 2, (2013).
  12. Shapiro, A. L., Viñuela, E., Maizel, J. V. Molecular weight estimation of polypeptide chains by electrophoresis in SDS-polyacrylamide gels. Biochem Biophys Res Commun. 28 (5), 815-820 (1967).
  13. Riches, A., Campbell, E., Borger, E., Powis, S. Regulation of exosome release from mammary epithelial and breast cancer cells – a new regulatory pathway. Eur J Cancer. 50 (5), 1025-1034 (2014).
  14. Witwer, K. W., et al. Standardization of sample collection, isolation and analysis methods in extracellular vesicle research. J Extracell Vesicles. 2, (2013).
  15. van der Vlist, E. J., Nolte-‘t Hoen, E. N., Stoorvogel, W., Arkesteijn, G. J., Wauben, M. H. Fluorescent labeling of nano-sized vesicles released by cells and subsequent quantitative and qualitative analysis by high-resolution flow cytometry. Nat Protoc. 7 (7), 1311-1326 (2012).
  16. Kowal, J., et al. Proteomic comparison defines novel markers to characterize heterogeneous populations of extracellular vesicle subtypes. Proc Natl Acad Sci U S A. 113 (8), E968-E977 (2016).
  17. Li, D., et al. ADVANCED IMAGING. Extended-resolution structured illumination imaging of endocytic and cytoskeletal dynamics. Science. 349 (6251), (2015).
  18. Outzen, H. C., Custer, R. P. Growth of human normal and neoplastic mammary tissues in the cleared mammary fat pad of the nude mouse. J Natl Cancer Inst. 55 (6), 1461-1466 (1975).
  19. Sheffield, L. G., Welsch, C. W. Transplantation of human breast epithelia to mammary-gland-free fat-pads of athymic nude mice: influence of mammotrophic hormones on growth of breast epithelia. Int J Cancer. 41 (5), 713-719 (1988).

Play Video

Cite This Article
Lin, M., Chen, S., He, P., Luo, W., Li, H. Transfer of Mammary Gland-forming Ability Between Mammary Basal Epithelial Cells and Mammary Luminal Cells via Extracellular Vesicles/Exosomes. J. Vis. Exp. (124), e55736, doi:10.3791/55736 (2017).

View Video