Summary

Scalable Solution-processed Fabrication Strategy for High-performance, Flexible, Transparent Electrodes with Embedded Metal Mesh

Published: June 23, 2017
doi:

Summary

This protocol describes a solution-based fabrication strategy for high-performance, flexible, transparent electrodes with fully-embedded, thick metal mesh. Flexible transparent electrodes fabricated by this process demonstrate among the highest reported performances, including ultra-low sheet resistance, high optical transmittance, mechanical stability under bending, strong substrate adhesion, surface smoothness, and environmental stability.

Abstract

Here, the authors report the embedded metal-mesh transparent electrode (EMTE), a new transparent electrode (TE) with a metal mesh completely embedded in a polymer film. This paper also presents a low-cost, vacuum-free fabrication method for this novel TE; the approach combines lithography, electroplating, and imprint transfer (LEIT) processing. The embedded nature of the EMTEs offers many advantages, such as high surface smoothness, which is essential for organic electronic device production; superior mechanical stability during bending; favorable resistance to chemicals and moisture; and strong adhesion with plastic film. LEIT fabrication features an electroplating process for vacuum-free metal deposition and is favorable for industrial mass production. Furthermore, LEIT allows for the fabrication of metal mesh with a high aspect ratio (i.e., thickness to linewidth), significantly enhancing its electrical conductance without adversely losing optical transmittance. We demonstrate several prototypes of flexible EMTEs, with sheet resistances lower than 1 Ω/sq and transmittances greater than 90%, resulting in very high figures of merit (FoM) – up to 1.5 x 104 – which are amongst the best values in the published literature.

Introduction

Worldwide, studies are being conducted to look for replacements for rigid transparent conductive oxides (TCOs), such as indium tin oxide and fluorine-doped tin oxide (FTO) films, in order to fabricate flexible/stretchable TEs to be used in future flexible/stretchable optoelectronic devices1. This necessitates novel materials with new fabrication methods.

Nanomaterials, such as graphene2, conducting polymers3,4, carbon nanotubes5, and random metal nanowire networks6,7,8,9,10,11, have been studied and have demonstrated their capabilities in flexible TEs, addressing the shortcomings of existing TCO-based TEs, including film fragility12, low infrared transmittance13, and low abundance14. Even with this potential, it is still challenging to attain high electrical and optical conductance without deterioration under continuous bending.

In this framework, regular metal meshes15,16,17,18,19,20 are evolving as a promising candidate and have accomplished remarkably high optical transparency and low sheet resistance, which can be tunable on demand. However, the extensive use of metal mesh-based TEs has been hindered due to numerous challenges. First, fabrication often involves the expensive, vacuum-based deposition of metals16,17,18,21. Second, the thickness may easily cause electrical short-circuiting22,23,24,25 in thin-film organic optoelectronic devices. Third, the weak adhesion with the substrate surface results in poor flexibility26,27. The abovementioned limitations have created a demand for novel metal mesh-based TE structures and scalable approaches for their fabrication.

In this study, we report a novel structure of flexible TEs that contains a metal mesh completely embedded in a polymer film. We also describe an innovative, solution-based, and low-cost fabrication approach that combines lithography, electrodeposition, and imprint transfer. FoM values as high as 15k have been achieved on sample EMTEs. Due to the embedded nature of EMTEs, remarkable chemical, mechanical, and environmental stability were observed. Furthermore, the solution-processed fabrication technique established in this work can potentially be used for the low-cost and high-throughput production of the proposed EMTEs. This fabrication technique is scalable to finer metal-mesh linewidths, larger areas, and a range of metals.

Protocol

CAUTION: Please pay attention to electron beam safety. Please wear the correct protective glasses and clothes. Also, handle the all flammable solvents and solutions carefully. 1. Photolithography-based Fabrication of the EMTE Photolithography for fabricating the mesh pattern. Clean FTO glass substrates (3 cm x 3 cm) with liquid detergent using cotton swab. Rinse them thoroughly with deionized (DI) water using a clean cotton swab. Further clean them usin…

Representative Results

Figure 1 displays the schematic and fabrication flowchart of the EMTE samples. As presented in Figure 1a, the EMTE consists of a metal mesh fully embedded in a polymer film. The upper face of the mesh is on the same level as the substrate, displaying a generally smooth platform for subsequent device production. The fabrication technique is schematically explained in Figure 1b-e. Afte…

Discussion

Our fabrication method can be further modified to allow for scalability of the feature sizes and areas of the sample and for the use of various materials. The successful fabrication of sub-micrometer-linewidth (Figure 3a-3c) copper EMTEs using EBL proves that EMTE structure and key steps in LEIT fabrication, including electroplating and imprint transfer, can be reliably scaled down to a sub-micrometer range. Similarly, other large-area lithography processes, such as phase-shift photolith…

Disclosures

The authors have nothing to disclose.

Acknowledgements

This work was partially supported by the General Research Fund of the Research Grants Council of the Hong Kong Special Administrative Region (Award No. 17246116), the Young Scholar Program of the National Natural Science Foundation of China (61306123), the Basic Research Program-General Program from the Science and Technology Innovation Commission of Shenzhen Municipality (JCYJ20140903112959959), and the Key Research and Development Program from the Zhejiang Provincial Department of Science and Technology (2017C01058). The authors would like to thank Y.-T. Huang and S. P. Feng for their help with the optical measurements.

Materials

Acetone Sigma-Aldrich W332615 Highly flammable
Isopropanol Sigma-Aldrich 190764 Highly flammable
FTO Glass Substrates South China Xiang S&T, China
Photoresist  Clariant, Switzerland 54611L11 AZ 1500 Positive tone resist (20cP)
UV Mask Aligner  Chinese Academy of Sciences, China URE-2000/35
Photoresist Developer  Clariant, Switzerland 184411 AZ 300 MIF Developer
Cu, Ag, Au, Ni, and Zn Electroplating solutions Caswell, USA Ready to use solutions (PLUG N' PLATE)
Keithley 2400 SourceMeter Keithley, USA 41J2103
COC Plastic Films TOPAS, Germany F13-19-1 Grade 8007 (Glass transition temperature: 78 °C)
Hydraulic Press  Specac Ltd., UK GS15011 With low tonnage kit ( 0-1 ton guage)
Temperature Controller  Specac Ltd., UK GS15515 Water cooled heated platens and controller
Chiller  Grant Instruments, UK T100-ST5
Polymethyl Methacrylate (PMMA) Sigma-Aldrich 200336
Anisole Sigma-Aldrich 96109 Highly flammable
EBL Setup Philips, Netherlands FEI XL30 Scanning electron microscope equipped with a JC Nabity pattern generator  
Isopropyl Ketone  Sigma-Aldrich 108-10-1
Silver Paste Ted Pella, Inc, USA 16031
UV–Vis Spectrometer  Perkin Elmer, USA L950

References

  1. Hecht, D. S., Hu, L., Irvin, G. Emerging Transparent Electrodes Based on Thin Films of Carbon Nanotubes, Graphene, and Metallic Nanostructures. Adv Mater. 23 (13), 1482-1513 (2011).
  2. Bonaccorso, F., Sun, Z., Hasan, T., Ferrari, A. C. Graphene photonics and optoelectronics. Nat Photonics. 4 (9), 611-622 (2010).
  3. Kirchmeyer, S., Reuter, K. Scientific importance, properties and growing applications of poly(3,4-ethylenedioxythiophene). J Mater Chem. 15 (21), 2077-2088 (2005).
  4. Vosgueritchian, M., Lipomi, D. J., Bao, Z. Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. Adv Funct Mater. 22 (2), 421-428 (2012).
  5. Zhang, M., et al. Strong, Transparent, Multifunctional, Carbon Nanotube Sheets. Science. 309 (5738), 1215-1219 (2005).
  6. De, S., et al. Silver Nanowire Networks as Flexible, Transparent, Conducting Films: Extremely High DC to Optical Conductivity Ratios. ACS Nano. 3 (7), 1767-1774 (2009).
  7. van de Groep, J., Spinelli, P., Polman, A. Transparent Conducting Silver Nanowire Networks. Nano Lett. 12 (6), 3138-3144 (2012).
  8. Hong, S., et al. Highly Stretchable and Transparent Metal Nanowire Heater for Wearable Electronics Applications. Adv Mater. 27 (32), 4744-4751 (2015).
  9. Bari, B., et al. Simple hydrothermal synthesis of very-long and thin silver nanowires and their application in high quality transparent electrodes. J Mater Chem A. 4 (29), 11365-11371 (2016).
  10. Hyunjin, M., Phillip, W., Jinhwan, L., Seung Hwan, K. Low-haze, annealing-free, very long Ag nanowire synthesis and its application in a flexible transparent touch panel. Nanotechnol. 27 (29), 295201 (2016).
  11. Lee, H., et al. Highly Stretchable and Transparent Supercapacitor by Ag-Au Core-Shell Nanowire Network with High Electrochemical Stability. ACS Appl Mater Interfaces. 8 (24), 15449-15458 (2016).
  12. Cairns, D. R., et al. Strain-dependent electrical resistance of tin-doped indium oxide on polymer substrates. Appl Phys Lett. 76 (11), 1425-1427 (2000).
  13. Bel Hadj Tahar, R., Ban, T., Ohya, Y., Takahashi, Y. Tin doped indium oxide thin films: Electrical properties. J Appl Phys. 83 (5), 2631-2645 (1998).
  14. Kumar, A., Zhou, C. The Race To Replace Tin-Doped Indium Oxide: Which Material Will Win?. ACS Nano. 4 (1), 11-14 (2010).
  15. Hong, S., et al. Nonvacuum, Maskless Fabrication of a Flexible Metal Grid Transparent Conductor by Low-Temperature Selective Laser Sintering of Nanoparticle Ink. ACS Nano. 7 (6), 5024-5031 (2013).
  16. Wu, H., et al. A Transparent Electrode Based on a Metal Nanotrough Network. Nat Nanotechnol. 8 (6), 421-425 (2013).
  17. Han, B., et al. Uniform Self-Forming Metallic Network as a High-Performance Transparent Conductive Electrode. Adv Mater. 26 (6), 873-877 (2014).
  18. Kim, H. -. J., et al. High-Durable AgNi Nanomesh Film for a Transparent Conducting Electrode. Small. 10 (18), 3767-3774 (2014).
  19. Kwon, J., et al. Low-Temperature Oxidation-Free Selective Laser Sintering of Cu Nanoparticle Paste on a Polymer Substrate for the Flexible Touch Panel Applications. ACS Appl Mater Interfaces. 8 (18), 11575-11582 (2016).
  20. Suh, Y. D., et al. Nanowire reinforced nanoparticle nanocomposite for highly flexible transparent electrodes: borrowing ideas from macrocomposites in steel-wire reinforced concrete. J Mater Chem C. 5 (4), 791-798 (2017).
  21. Bao, C., et al. In Situ Fabrication of Highly Conductive Metal Nanowire Networks with High Transmittance from Deep-Ultraviolet to Near-Infrared. ACS Nano. 9 (3), 2502-2509 (2015).
  22. van Osch, T. H. J., Perelaer, J., de Laat, A. W. M., Schubert, U. S. Inkjet Printing of Narrow Conductive Tracks on Untreated Polymeric Substrates. Adv Mater. 20 (2), 343-345 (2008).
  23. Ahn, B. Y., et al. Omnidirectional Printing of Flexible, Stretchable, and Spanning Silver Microelectrodes. Science. 323 (5921), 1590-1593 (2009).
  24. Khan, A., Rahman, K., Hyun, M. -. T., Kim, D. -. S., Choi, K. -. H. Multi-nozzle electrohydrodynamic inkjet printing of silver colloidal solution for the fabrication of electrically functional microstructures. Appl Phys A. 104 (4), 1113-1120 (2011).
  25. Khan, A., Rahman, K., Kim, D. S., Choi, K. H. Direct printing of copper conductive micro-tracks by multi-nozzle electrohydrodynamic inkjet printing process. J Mater Process Technol. 212 (3), 700-706 (2012).
  26. Ellmer, K. Past achievements and future challenges in the development of optically transparent electrodes. Nat Photonics. 6 (12), 809-817 (2012).
  27. Choi, H. -. J., et al. Uniformly embedded silver nanomesh as highly bendable transparent conducting electrode. Nanotechnol. 26 (5), 055305 (2015).
  28. Khan, A., Li, S., Tang, X., Li, W. -. D. Nanostructure Transfer Using Cyclic Olefin Copolymer Templates Fabricated by Thermal Nanoimprint Lithography. J Vac Sci Technol B. 32 (6), (2014).
  29. Khan, A., et al. High-Performance Flexible Transparent Electrode with an Embedded Metal Mesh Fabricated by Cost-Effective Solution Process. Small. 12 (22), 3021-3030 (2016).
  30. Moon Kyu, K., Jong, G. O., Jae Yong, L., Guo, L. J. Continuous phase-shift lithography with a roll-type mask and application to transparent conductor fabrication. Nanotechnol. 23 (34), 344008 (2012).
  31. Chou, S. Y., Krauss, P. R., Renstrom, P. J. Imprint of sub-25 nm vias and trenches in polymers. Appl Phys Lett. 67 (21), 3114-3116 (1995).
  32. Manfrinato, V. R., et al. Resolution Limits of Electron-Beam Lithography toward the Atomic Scale. Nano Lett. 13 (4), 1555-1558 (2013).
  33. Khan, A., et al. Solution-processed Transparent Nickel-mesh Counter Electrode with In-situ Electrodeposited Platinum Nanoparticles for Full-Plastic Bifacial Dye-sensitized Solar Cells. ACS Appl Mater Interfaces. 9 (9), 8083-8091 (2017).
  34. Lee, J., et al. A dual-scale metal nanowire network transparent conductor for highly efficient and flexible organic light emitting diodes. Nanoscale. 9 (5), 1978-1985 (2017).
  35. Khan, S., et al. Direct patterning and electrospray deposition through EHD for fabrication of printed thin film transistors. Current Appl Phys. 11 (1), S271-S279 (2011).
check_url/kr/56019?article_type=t

Play Video

Cite This Article
Khan, A., Lee, S., Jang, T., Xiong, Z., Zhang, C., Tang, J., Guo, L. J., Li, W. Scalable Solution-processed Fabrication Strategy for High-performance, Flexible, Transparent Electrodes with Embedded Metal Mesh. J. Vis. Exp. (124), e56019, doi:10.3791/56019 (2017).

View Video