Summary

Generation af en kronisk obstruktiv lungesygdom Model i mus ved gentagne ozon eksponering

Published: August 25, 2017
doi:

Summary

Denne undersøgelse beskriver den succesfulde generation af en ny kronisk obstruktiv lungesygdom (KOL) dyremodel af gentagne gange udsætter mus til høje koncentrationer af ozon.

Abstract

Kronisk obstruktiv lungesygdom (KOL) er karakteriseret ved vedvarende luftstrømmen begrænsning og lunge parenkymalt ødelæggelse. Det har en meget høj forekomst i aldrende befolkninger. Den nuværende konventionelle behandlingsformer for KOL fokus primært på symptom-ændring narkotika; udvikling af nye behandlingsformer er således bydende nødvendigt. Kvalificeret dyremodeller for KOL kunne bidrage til at karakterisere de underliggende mekanismer og kan bruges til nye stof screening. Nuværende KOL modeller, såsom LPS (LPS) eller de svin i bugspytkirtlen elastase (PPE)-induceret emfysem model, generere KOL-lignende læsioner i lungerne og luftvejene men ikke ellers ligner patogenesen af menneskelige KOL. En cigaretrøg (CS)-induceret model er en af de mest populære, fordi det ikke kun simulerer KOL-lignende læsioner i luftvejene, men det er også baseret på en af de vigtigste farlige materialer, der forårsager KOL i mennesker. Men de tidskrævende og arbejdskrævende aspekter af modellens CS-induceret dramatisk begrænse dens anvendelse i nye stof screening. I denne undersøgelse genereret vi med succes en ny KOL model ved at udsætte mus til høje niveauer af ozon. Denne model viste følgende: 1) faldt tvungen ekspirationsvolumen 25, 50 og 75/tvunget vital kapacitet (FEV25/FVC, FEV50/FVC og FEV75/FVC), der angiver forværringen af lungefunktion; 2) udvidet lunge alveolerne, med lunge parenkymalt ødelæggelse; 3) reduceret træthed tid og afstand; og 4) øget inflammation. Taget sammen, viser disse data, at ozon eksponering (OE) model er en pålidelig dyremodel, der ligner mennesker fordi ozon overeksponering er en af de ætiologiske faktorer af KOL. Desuden, tog det kun 6-8 uger, baseret på vores tidligere arbejde, at skabe en OE model, der henviser til, at det kræver 3-12 måneder til at fremkalde cigaretrøg model, der angiver, at OE model kunne være et godt valg for KOL forskning.

Introduction

Det er blevet anslået, at KOL, herunder emfysem og kronisk bronkitis, kunne være den tredje hyppigste årsag til dødsfald i verden i 20201,2. Potentielle forekomsten af KOL i en befolkning over 40 år gamle skønnes for at være 12,7% hos mænd og 8,3% hos kvinder inden for de næste 40 år3. Ingen medicin er i øjeblikket tilgængelig at vende den gradvise forværring i KOL patienter4. Pålidelig dyremodeller for KOL ikke kun kræve efterligning af patologiske sygdomsprocessen men også kræver et kort generation periode. Nuværende KOL modeller, herunder LP’ER eller en PPE-induceret model, kan fremkalde emfysem-lignende symptomer5,6. En enkelt administration eller en uge-lang udfordring af LP’ER eller PPE til mus eller rotter resulterer i markant neutrofili i bronchoalveolar lavage væske (BALF), øger pro-inflammatoriske mediatorer (fx TNF-α og IL-1β) i BALF eller serum, producerer lung parenkymalt ødelæggelse, udvidede luft rum, og grænser luftstrømmen5,6,7,8,9,10. Dog LP’ER eller PPE er ikke årsagerne til menneskelige KOL og dermed efterligne ikke den patologiske proces11. En CS-induceret model produceret en vedvarende luftstrømmen begrænsning, lunge parenkymalt ødelæggelse, og reduceret funktionelle motion kapacitet. Men en traditionel CS protokollen kræver mindst 3 måneder til at generere en KOL model12,13,14,15. Det er således vigtigt at generere en ny, mere effektiv dyremodel, der opfylder de to krav.

For nylig, supplement rygning, luftforurening og erhvervsmæssig eksponering er blevet mere almindelige årsager til KOL16,17,18. Ozon, som en af de vigtigste forurenende stoffer (dog ikke det vigtigste element i luftforurening), kan direkte reagerer med luftvejene og ødelægge lungevæv af både børn og unge voksne19,20,21 ,22,23,24,25. Ozon, samt andre Stimulatorer, herunder LP’ER, PPE og CS, er involveret i en alvorlig af biokemiske veje af pulmonal oxidativ stress og DNA-skader og er knyttet til indledningen og fremme af KOL26,27. En anden faktor er, at symptomerne på nogle KOL patienter forværres efter at være udsat for ozon, der angiver, at ozon kan forstyrre lunge funktion18,28,29. Derfor, vi skabt en ny KOL model af gentagne gange udsætter mus til høje koncentrationer af ozon i 7 uger; Dette resulterede i luftstrømmen defekter og lunge parenkymalt skader ligner dem i tidligere undersøgelser30,31,32. Vi udvidede OE protokol til hunmus i denne undersøgelse og gengivet korrekt emfysem observeret i mandlige mus i vores tidligere undersøgelser30,31,32. Fordi KOL dødeligheden er faldet i mænd, men øget hos kvinder i mange lande33, en KOL model i hunner er nødvendigt at studere mekanismerne og udvikle terapeutiske metoder for kvindelige KOL-patienter. Anvendeligheden af OE model til alle køn giver yderligere støtte til dets anvendelse som en KOL model.

Protocol

Bemærk: The OE model har skabt og brugt i tidligere rapporterede forskning 30 , 31 , 32. Alle dyreforsøg blev godkendt af institutionelle Animal Care og brug udvalg (IACUC) i Shanghai Jiaotong Universitet. 1. mus hus patogenfrie, 7 til 9 uger gamle BALB/c hunmus i individuelle ventileret bure i en dyr facilitet under kontrolleret temperatur (20 ° C) og fugtighed (40-60%). Give en 12-…

Representative Results

Eksempler på 3D µCT billeder af hver gruppe er vist i figur 1en. Ozon-eksponerede mus havde en betydeligt større samlede lunge volumen (figur 1en og b) og LAA % (figur 1c) end gjorde luft-eksponerede kontrol mus. Lunge volumen og LAA % forblev forhøjet efter seks uger af ozon eksponering31,32</…

Discussion

I denne undersøgelse præsenterer vi en pålidelig metode til at generere en ny KOL model. Sammenlignet med andre modeller (dvs. LP’ER eller PV-modeller), sammenfatter denne OE model den patologiske proces af KOL-patienter. Fordi cigaretrøg er den vigtigste farligt materiale, der forårsager KOL i menneskelige patienter40, stadig CS modellen den mest populære KOL model41,42. CS modellen kræver dog en 3 – 12 måneder R & D …

Disclosures

The authors have nothing to disclose.

Acknowledgements

Forfatterne vil gerne udtrykke taknemmelighed over for Mr. Boyin Qin (Shanghai Public Health kliniske Center) for den tekniske bistand med µCT evaluering i denne protokol.

Materials

BALB/c mice Slac Laboratory Animal,Shanghai, China N/A 7-to-9-week-old female BALB/c mice were used in this study.
Individual ventilated cages Suhang, Shanghai, China Model Number: MU64S7 The cages were used for housing mice in the animal facility.
Sealing perspex-box Suhang, Shanghai, China N/A The box was used  to contain the ozone generator. Mice were exposed to ozone within the box.
Electric generator Sander Ozoniser, Uetze-Eltze, Germany Model 500  The device was used for generating ozone.
Ozone probe ATi Technologies, Ashton-U-Lyne, Greater Manchester, UK Ozone 300 The device was used for monitoring and controlling the generation of ozone.
Pelltobarbitalum natricum Sigma, St. Louis, MO, USA P3761 Mice were anesthetized by intraperitoneal injection of pelltobarbitalum natricum.
Micro-Computed Tomography GE Healthcare, London, ON, Canada RS0800639-0075 This device was used for acquiring images of the lung.
Micro-view 2.01 ABA software GE Healthcare, London, ON, Canada Micro-view 2.01  This device was used for reconstruct the lung and analyze volume, LAA of the lung.
Treadmill machine  Duanshi, Hangzhou, Zhejiang, China DSPT-208 This machine was usd for fatigue test.
Body plethysmograph eSpira™ Forced Manoeuvres System, EMMS, Edinburgh, UK Forced Manoeuvres System This device was used to test spirometry pulmonary function.
Ventilator eSpira™ Forced Manoeuvres System, EMMS, Edinburgh, UK Forced Manoeuvres System This device was used to test spirometry pulmonary function.
Slide spinner centrifuge Denville Scientific, Holliston, MA, USA C1183  It was used to spin BALF cells onto slides.
Wright Staining Hanhong, Shanghai, China RE04000054  It was used to staining macrophages, neutrophils in the suspended BALF.
Hemocytometer Hausser Scientific, Horsham, PA, USA 4000 It was used to count cells.
IL-1β Abcam, Cambridge, MA, USA ab100704 They were used to test the respective factors in serum.
IL-10 Abcam, Cambridge, MA, USA ab46103 They were used to test the respective factors in serum.
TNF-α Abcam, Cambridge, MA, USA ab100747 They were used to test the respective factors in serum.
Paraformaldehyde  Sigma, St. Louis, MO, USA P6148 The lung was inflated by 4% paraformaldehyde.
Paraffin Hualing, Shanghai, China 56# It was used to embed the lung.
Rotary Microtome Leica, Wetzlar,  Hesse, Germany RM2255 It was used for sectioning the lung.
Hgaematoxylin and Eosin (H&E) staining solution Solarbio, Beijing, China G1120 H&E staining was done for morphometric analysis.
Upright bright field microscope Olympus, Center Valley, PA, USA CX41 It was used to image the H&E staining slides.
Adobe Photoshop 12 Adobe, San Jose, CA, USA Adobe Photoshop 12 It was used to count the number of alveoli on the H&E stained images.
GraphPad prism 5 Graphpad Software Inc., San Diego, CA GraphPad prism 5 It was used for data analysis and production of figures.

References

  1. Lozano, R., et al. Global and regional mortality from 235 causes of death for 20 age groups in 1990 and 2010: a systematic analysis for the Global Burden of Disease Study 2010. Lancet. 380, 2095-2128 (2012).
  2. Chapman, K. R., et al. Epidemiology and costs of chronic obstructive pulmonary disease. Eur Respir J. 27, 188-207 (2006).
  3. Afonso, A. S., Verhamme, K. M., Sturkenboom, M. C., Brusselle, G. G. COPD in the general population: prevalence, incidence and survival. Respir Med. 105, 1872-1884 (2011).
  4. Rabe, K. F., et al. Global strategy for the diagnosis, management, and prevention of chronic obstructive pulmonary disease: GOLD executive summary. Am J Respir Crit Care Med. 176, 532-555 (2007).
  5. Ogata-Suetsugu, S., et al. Amphiregulin suppresses epithelial cell apoptosis in lipopolysaccharide-induced lung injury in mice. Biochem Biophys Res Communi. 484, 422-428 (2017).
  6. Oliveira, M. V., et al. Characterization of a Mouse Model of Emphysema Induced by Multiple Instillations of Low-Dose Elastase. Front Physiol. 7, 457 (2016).
  7. Vernooy, J. H., Dentener, M. A., van Suylen, R. J., Buurman, W. A., Wouters, E. F. Long-term intratracheal lipopolysaccharide exposure in mice results in chronic lung inflammation and persistent pathology. Am J Respir Cell Mol Biol. 26, 152-159 (2002).
  8. Birrell, M. A., et al. Role of matrix metalloproteinases in the inflammatory response in human airway cell-based assays and in rodent models of airway disease. J Pharm Exp Ther. 318, 741-750 (2006).
  9. Gamze, K., et al. Effect of bosentan on the production of proinflammatory cytokines in a rat model of emphysema. Exp Mol Med. 39, 614-620 (2007).
  10. Vanoirbeek, J. A., et al. Noninvasive and invasive pulmonary function in mouse models of obstructive and restrictive respiratory diseases. Am J Respir Cell Mol Biol. 42, 96-104 (2010).
  11. Wright, J. L., Cosio, M., Churg, A. Animal models of chronic obstructive pulmonary disease. Am J Physiol Lung Cell Mol Physiol. 295, 1-15 (2008).
  12. Huh, J. W., et al. Bone marrow cells repair cigarette smoke-induced emphysema in rats. Am J Physiol Lung Cell Mol Physiol. 301, 255-266 (2011).
  13. Schweitzer, K. S., et al. Adipose stem cell treatment in mice attenuates lung and systemic injury induced by cigarette smoking. Am J Respir Crit Care Med. 183, 215-225 (2011).
  14. Guan, X. J., et al. Mesenchymal stem cells protect cigarette smoke-damaged lung and pulmonary function partly via VEGF-VEGF receptors. J Cell Biochem. 114, 323-335 (2013).
  15. Gu, W., et al. Mesenchymal stem cells alleviate airway inflammation and emphysema in COPD through down-regulation of cyclooxygenase-2 via p38 and ERK MAPK pathways. Sci Rep. 5, 8733 (2015).
  16. Cordasco, E. M., VanOrdstrand, H. S. Air pollution and COPD. Postgrad Med. 62, 124-127 (1977).
  17. Berend, N. Contribution of air pollution to COPD and small airway dysfunction. Respirology. 21, 237-244 (2016).
  18. DeVries, R., Kriebel, D., Sama, S. Outdoor Air Pollution and COPD-Related Emergency Department Visits, Hospital Admissions, and Mortality: A Meta-Analysis. COPD. 14 (1), 113-121 (2016).
  19. Penha, P. D., Amaral, L., Werthamer, S. Ozone air pollutants and lung damage. IMS Ind Med Surg. 41, 17-20 (1972).
  20. Stern, B. R., et al. Air pollution and childhood respiratory health: exposure to sulfate and ozone in 10 Canadian rural communities. Environ Res. 66, 125-142 (1994).
  21. Tager, I. B., et al. Chronic exposure to ambient ozone and lung function in young adults. Epidemiology. 16, 751-759 (2005).
  22. Romieu, I., Castro-Giner, F., Kunzli, N., Sunyer, J. Air pollution, oxidative stress and dietary supplementation: a review. Eur Respir J. 31, 179-197 (2008).
  23. Hemming, J. M., et al. Environmental Pollutant Ozone Causes Damage to Lung Surfactant Protein B (SP-B). 생화학. 54, 5185-5197 (2015).
  24. Chu, H., et al. Comparison of lung damage in mice exposed to black carbon particles and ozone-oxidized black carbon particles. Sci Total Environ. 573, 303-312 (2016).
  25. Jin, M., et al. MAP4K4 deficiency in CD4(+) T cells aggravates lung damage induced by ozone-oxidized black carbon particles. Environ Toxicol Pharmacol. 46, 246-254 (2016).
  26. Brusselle, G. G., Joos, G. F., Bracke, K. R. New insights into the immunology of chronic obstructive pulmonary disease. Lancet. 378, 1015-1026 (2011).
  27. Valavanidis, A., Vlachogianni, T., Fiotakis, K., Loridas, S. Pulmonary oxidative stress, inflammation and cancer: respirable particulate matter, fibrous dusts and ozone as major causes of lung carcinogenesis through reactive oxygen species mechanisms. Int J Environ Res Public Health. 10, 3886-3907 (2013).
  28. Medina-Ramon, M., Zanobetti, A., Schwartz, J. The effect of ozone and PM10 on hospital admissions for pneumonia and chronic obstructive pulmonary disease: a national multicity study. Am J Epidemiol. 163, 579-588 (2006).
  29. Lee, I. M., Tsai, S. S., Chang, C. C., Ho, C. K., Yang, C. Y. Air pollution and hospital admissions for chronic obstructive pulmonary disease in a tropical city: Kaohsiung, Taiwan. Inha Toxicol. 19, 393-398 (2007).
  30. Triantaphyllopoulos, K., et al. A model of chronic inflammation and pulmonary emphysema after multiple ozone exposures in mice. Am J Physiol Lung Cell Mol Physiol. 300, 691-700 (2011).
  31. Li, F., et al. Effects of N-acetylcysteine in ozone-induced chronic obstructive pulmonary disease model. PLoS ONE. 8, e80782 (2013).
  32. Li, F., et al. Hydrogen Sulfide Prevents and Partially Reverses Ozone-Induced Features of Lung Inflammation and Emphysema in Mice. Am J Respir Cell Mol Biol. 55, 72-81 (2016).
  33. Rycroft, C. E., Heyes, A., Lanza, L., Becker, K. Epidemiology of chronic obstructive pulmonary disease: a literature review. Int J Chron Obstruct Pulmon Dis. 7, 457-494 (2012).
  34. Washko, G. R., et al. Airway wall attenuation: a biomarker of airway disease in subjects with COPD. J Appl Physiol. 107, 185-191 (2009).
  35. Yamashiro, T., et al. Quantitative assessment of bronchial wall attenuation with thin-section CT: An indicator of airflow limitation in chronic obstructive pulmonary disease. AJR Am J Roentgenol. 195, 363-369 (2010).
  36. Tang, X., et al. Arctigenin efficiently enhanced sedentary mice treadmill endurance. PLoS ONE. 6, e24224 (2011).
  37. Schmidt, G. A., et al. Official Executive Summary of an American Thoracic Society/American College of Chest Physicians Clinical Practice Guideline: Liberation from Mechanical Ventilation in Critically Ill Adults. Am J Respir Crit Care Med. 195, 115-119 (2017).
  38. ATS Committee on Proficiency Standards for Clinical Pulmonary Function Laboratories. ATS statement: guidelines for the six-minute walk test. Am J Respir Crit Care Med. 166, 111-117 (2002).
  39. Shigemura, N., et al. Autologous transplantation of adipose tissue-derived stromal cells ameliorates pulmonary emphysema. Am J Transplant. 6, 2592-2600 (2006).
  40. Bchir, S., et al. Concomitant elevations of MMP-9, NGAL, proMMP-9/NGAL and neutrophil elastase in serum of smokers with chronic obstructive pulmonary disease. J Cell Mol Med. , 1-12 (2016).
  41. Fricker, M., Deane, A., Hansbro, P. M. Animal models of chronic obstructive pulmonary disease. Expert Opin Drug Discov. 9, 629-645 (2014).
  42. Perez-Rial, S., Giron-Martinez, A., Peces-Barba, G. Animal models of chronic obstructive pulmonary disease. Arch Bronconeumol. 51, 121-127 (2015).
  43. Antunes, M. A., et al. Effects of different mesenchymal stromal cell sources and delivery routes in experimental emphysema. Respir Res. 15, 118 (2014).
  44. Celli, B. R., MacNee, W., Force, A. E. T. Standards for the diagnosis and treatment of patients with COPD: a summary of the ATS/ERS position paper. Eur Respir J. 23, 932-946 (2004).
  45. U.S. Preventive Services Task Force. Screening for chronic obstructive pulmonary disease using spirometry: U.S. Preventive Services Task Force recommendation statement. Ann Intern Med. 148, 529-534 (2008).
  46. Ward, R. E., et al. Design considerations of CareWindows, a Windows 3.0-based graphical front end to a Medical Information Management System using a pass-through-requester architecture. Proc Annu Symp Comput Appl Med Care. , 564-568 (1991).
check_url/kr/56095?article_type=t

Play Video

Cite This Article
Sun, Z., Li, F., Zhou, X., Wang, W. Generation of a Chronic Obstructive Pulmonary Disease Model in Mice by Repeated Ozone Exposure. J. Vis. Exp. (126), e56095, doi:10.3791/56095 (2017).

View Video