Summary

Эффективное создание и редактирование фидер свободный IPSCs от человеческих клеток поджелудочной железы, с использованием системы ТРИФОСФАТЫ Cas9

Published: November 08, 2017
doi:

Summary

Протокол описывает подробно поколения след бесплатный индуцированных плюрипотентных стволовых клеток (iPSCs) от человеческих клеток поджелудочной железы в фидер свободных условиях, вслед за этим редактирования с помощью ТРИФОСФАТЫ/Cas9 ribonucleoproteins и характеристика изменение клоны одноклеточных.

Abstract

Эмбриональные и индуцированных плюрипотентных стволовых клеток может самостоятельно обновить и дифференцироваться в несколько типов клеток тела. Плюрипотентных клеток таким образом желанной для исследований в регенеративной медицине и в настоящее время в клинических испытаниях для глазных заболеваний, диабета, заболеваний сердца и других расстройств. Потенциал, чтобы дифференцироваться в типы специализированных клеток в сочетании с последних достижений в геноме, редактирования технологий, включая системы ТРИФОСФАТЫ/Cas предоставили дополнительные возможности для пошива геном iPSC для разнообразных приложений включая моделирование, болезней генотерапии и стабилизатор пути дифференциации, чтобы назвать несколько. Среди доступных технологий редактирования ТРИФОСФАТЫ/Cas9 от Streptococcus pyogenes возникла как инструмент выбора для редактирования участкам генома эукариот. CRISPRs легко доступны, недорогих и высокоэффективных технических целевых изменения. Система требует Cas9 Нуклеаза и руководство последовательности (20-mer), относящиеся к genomic цели примыкающих 3-нуклеотид «НЭС» protospacer рядом мотив (PAM) для ориентации Cas9 желаемого геномной локус, наряду с трассирующими универсальная Cas9 связывания РНК ( Вместе они называются одной руководство РНК или sgRNA). Здесь мы представляем пошаговые протокол для эффективного поколения фидер независимых и свободных след iPSC и описания методологий для изменения генома в iPSC, используя комплексы рибонуклеопротеида (RNP) Cas9. Геном редактирования протокола является эффективным и может быть легко мультиплексируются по pre комплексообразования sgRNAs для более чем одной цели с Cas9 белками и одновременно доставлять в клетки. Наконец мы описываем упрощенный подход для идентификации и определения характеристик iPSCs с желаемых изменений. Взятые вместе, изложил стратегии предполагается упростить создание и редактирование iPSC для многочисленных приложений.

Introduction

Перепрограммирование человека соматические клетки pluripotent государству, гиперэкспрессия перепрограммирования факторов революцию исследования стволовых клеток с приложениями моделирования заболевания, регенеративной медицины и разработки лекарственных средств. Несколько не вирусный перепрограммирования методы доступны для доставки перепрограммирования факторы и генерации iPSCs, но этот процесс является труда интенсивной и не очень эффективно1. Вирусные методы, хотя эффективное, связаны с проблемами вирус интеграции и tumorigenicity2,3,4. В этой рукописи мы сообщают об использовании цитоплазматических Сэндай вируса для доставки перепрограммирования факторы и создания свободных след iPSC линий, которые отсутствие интеграции любой вирусный вектор последовательности в их геном5. РНК вирус, который разводится из клеток цитоплазме ~ 10 ходов после инфекции и производит перепрограммирования факторов в изобилии, приводит к быстрой и эффективной перепрограммирования6,7является Сендай. Установленные iPSCs можно затем легко перешли на фидер свободный средних и избежать использования мыши эмбриональных фибробластов (MEFs) как фидер клетки8.

В этой публикации, наряду с изложением Сэндай вирус опосредованной перепрограммирования мы также описывают улучшение протокол для редактирования iPSCs, который имеет потенциал, чтобы предоставить неограниченное количество клеток человека с желаемой генетических модификаций для научных исследований. Мы использовали технологию ТРИФОСФАТЫ/Cas9 для модификации iPSCs, который в настоящее время используется для широкого спектра приложений, включая стук ins и нокауты, крупномасштабные геномной удаления, Объединенные библиотеки проверки для обнаружения гена, генная инженерия многочисленные модели организмов и генной терапии9,10,11. Этот метод предполагает формирование комплексов Streptococcus pyogenes-производные Cas9 Нуклеаза и 20-mer руководство РНК, обеспечивающие признание целевой через базу сопряжения с геномные последовательности прилегающих к 3′ нуклеотидом protospacer соседними мотив (PAM) последовательности. Cas9 Нуклеаза индуцирует двойной мель перерыв ~ 3 нуклеотидов с PAM сайта, который впоследствии восстановленной преимущественно концу не гомологичных присоединения (NHEJ) путь, ведущий к вставки или удаления в рамках открытой чтении и тем самым функциональным нокаут гены12.

Наша Улучшенная протокол включает в себя сведения о культуре человеческих клеток поджелудочной железы, их перепрограммирования на mitotically инактивированная мыши эмбриональных фибробластов (MEFs) для достижения более высокой эффективности перепрограммирование, последующей адаптации к культуре фидер бесплатно на Matrigel, характеристика установленных iPSCs, ТРИФОСФАТЫ руководствоваться РНК дизайн и подготовка, Доставка в iPSCs как RNP комплексы, одну ячейку Сортировка для создания клоновых линий редактировать iPSCs, легко отбора и идентификации изменений и характеристика Одноячеистый клонов. Геномной удаления эффективно были созданы в этом исследовании путем введения Cas9 белка и два ТРИФОСФАТЫ sgRNA RNP комплексов побудить двойной мель перерывы (DSBs) и исключить вмешательство сегмента. Этот метод основывается на использовании двух руководств для генерации исключений в рамках открытой чтении, высокая эффективность NHEJ приводит к низкой количество клонов что необходимо охарактеризовать и легко предварительного отбора клонов, автоматизированных капилляров электрофорез блок, фрагмент анализатора. Эти эффективные генома, редактирование методы для создания модели на основе стволовых клеток заболеваний человека вскоре станет стандартной и обычные подход в любой лаборатории стволовых клеток. Наконец точное генома редактирования позволит выйти за рамки моделирования заболевания стволовых клеток и потенциально может помочь стимулировать клетки-терапии.

Protocol

1. перепрограммирование протокол поколения человека iPSC от первичных человеческих клеток поджелудочной железы пальто 6-ну пластины с 1,5 мг/мл холодной коллагена и позволить ему гель при 37 ° C за 1 ч. Тарелка скорейшее прохождение человека первичных клеток поджелу?…

Representative Results

В этой публикации мы следим за простой, но эффективный протокол для поколения iPSC от человеческих клеток поджелудочной железы с помощью интеграции или след свободный вирус Сэндай векторов. Рисунок 1A показывает схематическое изображение этой перепрогр…

Discussion

Перепрограммирование соматических клеток человека к iPSCs предоставила значительный импульс в области фундаментальной биологии исследований, персонализированной медицины, болезни моделирования, разработки лекарственных средств и регенеративной медицины16. Многие текущи…

Disclosures

The authors have nothing to disclose.

Acknowledgements

Работа в лаборатории был поддержан докторской стипендии Грант доктор Анджали Nandal и исследовательский грант от Фонда исследований стволовых клеток Мэриленд для BT (ТЕДКО).

Materials

Sendai viral vectors – CytoTune-iPS 2.0 Kit Invitrogen A16517 Thaw on ice; S No: 1
Trypsin EDTA Gibco Life Tech 25300-054 0.05%, 100 ml; S No: 2
Rock inhibitor (Y-27632) Milipore SCM075 Use 10 μM; S No: 3
DMEM/F-12 medium Invitrogen 11330-032 S No: 4
Serum replacement (KSR) Gibco 10828028 S No: 5
DMEM Invitrogen 11960069 1X; S No: 6
Fetal bovine serum Thermo Scientific SH30071.03 Aliquot; S No: 7
L-glutamine (Glutamax, 100X), liquid Thermo Scientific 35050061 1/100; S No: 8
Non-Essential Amino Acids Gibco 11140-050 1/100; S No: 9
2-Mercaptoethanol Gibco 21985023 55 mM, 1/1,000; S No: 10
Hausser Hemacytometers Hausser Scientific 02-671-54 S No: 11
 0.1% Gelatin Solution STEMCELL Technologies 7903 Incubate at 37º C for 1 hour; S No: 12
SSEA-4 antibody Santacruz sc-21704 1/100; S No: 13
TRA-1-81 antibody Cell Signaling 4745S 1/200; S No: 14
 OCT4 antibody Santa Cruz sc-5279 1/1,000; S No: 15
Collagen I, Rat Tail Life Technologies A10483-01 Keep cold; S No: 16
Alexa Fluor fluorescent 488/ 568 (secondary antibodies) Invitrogen A21202/A10042 1/2,000; S No: 17
DPBS Hyclone SH30028LS 1X; S No: 18
100-mm tissue culture dish Falcon 353003 S No: 20
96-well tissue culture plate Falcon 353078 S No: 21
6-well tissue culture plate Falcon 353046 S No: 22
Dissecting scope  Nikon SMZ745 S No: 23
Picking hood NuAire NU-301 S No: 24
15 ml Centrifuge Tube Greiner Bio-One 188271 S No: 25
50 ml Centrifuge Tube Greiner Bio-One 227261 S No: 26
Sodium pyruvate Invitrogen 11360 S No: 28
β-mercaptoethanol Sigma M7522 S No: 29
Prigrow III medium ABM TM003 S No: 31
Countess™ Cell Counter Invitrogen C10227 S No: 32
Faxitron X-ray system Faxitron CellRad S No: 33
Accutase Innovative cell Technologies AT-104 S No: 34
Collagenase Life Technologies 17104019 1mg/ml stock; S No: 35
Dispase STEMCELL Technologies 7923 S No: 36
hESC qualified matrigel BD Biosciences 354277 To dilute, use cold DMEM/F-12; S No: 37
bFGF R & D 233-FB Stock 10 ug/ml; S No: 38
Paraformaldehyde EMS 15710 4% stock in PBS; S No: 39
TRA-1-60 Santa Cruz sc-21705 1/100; S No: 40
NANOG ReproCELL RCAB0004P-F 1/100; S No: 41
Tween 20 Sigma P9416-100ML S No: 42
Alkaline Phosphatase kit Stemgent 00-0055 S No: 43
Cas9 protein PNA Bio CP01-50 Thaw and aliquot; S No: 44
Goat or donkey serum Sigma D9663/G9023 S No: 45
Triton X-100 Sigma X100-100ML S No: 46
DAPI Thermo Scientific D1306 S No: 47
Tris Sigma 9285-100ML S No: 48
NaCL Sigma S7653-250G S No: 49
EDTA Sigma BP2482-500 S No: 50
T4 DNA ligase NEB M0202T S No: 51
Mega Shortscript T7 kit Thermo Scientific AM1354 S No: 52
Mega Clear kit Thermo Scientific AM1908 S No: 53
SMC4 BD Biosciences 354357 S No: 54
Fibronectin STEMCELL Technologies 7159 S No: 55
CloneJET cloning kit Thermo Scientific K1232 S No: 56
Fragment analyzerTM Advanced Analytical S No: 57
mTeSR1 medium kit STEMCELL Technologies 5850 Warm to room temperature; S No: 58
Freezing medium mFreSR™ STEMCELL Technologies 5855 S No: 59
Freezing medium CryoStor® STEMCELL Technologies 7930 S No: 60
MEFs Globalstem GSC-6301G S No: 61
L-glutamine Invitrogen 25030081 S No: 62
Human pancreatic cells ABM T0159 S No: 63
STEMdiff™ Neural Induction Medium Stemcell Technologies 5835 S No: 64
RPMI Thermofisher 11875-093 S No: 65
2% B27-insulin Thermofisher A1895601 S No: 66
CHIR99021 Stemcell Technologies 72052 S No: 67
IWP4 Stemcell Technologies 72552 S No: 68
2% B27 Thermofisher 17504044 S No: 69
MCDB 131 Life Technologies 10372019 S No: 70
Sodium bicarbonate Sigma-Aldrich S8761-100ML S No: 71
Glucose Sigma-Aldrich G8270-100G S No: 72
BSA Proliant 68700 S No: 73
GDF8 Pepro-Tech 120-00 S No: 74
TUJ1 antibody EMD Milipore AB9354 S No: 75
NKX2-5 antibody Santa Cruz Sc-14033 S No: 76
SOX17 antibody R & D systems AF1924 S No: 77
Propidium iodide Thermo Scientific P3566 S No: 78
Amaxa 4D-nucleofector™ Lonza AAF-1002 S No: 79
FACSAria II (cell sorter) BD biosciences SORP UV S No: 80

References

  1. Malik, N., Rao, M. S. A review of the methods for human iPSC derivation. Methods Mol. Biol. 997, 23-33 (2013).
  2. Yu, J., et al. Induced pluripotent stem cell lines derived from human somatic cells. Science. 318, 1917-1920 (2007).
  3. Takahashi, K., Yamanaka, S. Induction of pluripotent stem cells from mouse embryonic and adult fibroblast cultures by defined factors. Cell. 126, 663-676 (2006).
  4. Sommer, C. A., et al. Induced pluripotent stem cell generation using a single lentiviral stem cell cassette. Stem cells. 27, 543-549 (2009).
  5. Macarthur, C. C., et al. Generation of human-induced pluripotent stem cells by a nonintegrating RNA Sendai virus vector in feeder-free or xeno-free conditions. Stem cells Int. , 564612 (2012).
  6. Li, H. O., et al. A cytoplasmic RNA vector derived from nontransmissible Sendai virus with efficient gene transfer and expression. J Virol. 74, 6564-6569 (2000).
  7. Fusaki, N., Ban, H., Nishiyama, A., Saeki, K., Hasegawa, M. Efficient induction of transgene-free human pluripotent stem cells using a vector based on Sendai virus, an RNA virus that does not integrate into the host genome. Proc. Jpn. Acad. Ser. B, PhysBiol. Sci. 85, 348-362 (2009).
  8. Nakagawa, M., et al. A novel efficient feeder-free culture system for the derivation of human induced pluripotent stem cells. Sci. Rep. 4, 3594 (2014).
  9. Hockemeyer, D., Jaenisch, R. Induced Pluripotent Stem Cells Meet Genome Editing. Cell stem cell. 18, 573-586 (2016).
  10. Komor, A. C., Badran, A. H., Liu, D. R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 169, 559 (2017).
  11. Komor, A. C., Badran, A. H., Liu, D. R. CRISPR-Based Technologies for the Manipulation of Eukaryotic Genomes. Cell. 168, 20-36 (2017).
  12. Sander, J. D., Joung, J. K. CRISPR-Cas systems for editing, regulating and targeting genomes. Nat. Biotech. 32, 347-355 (2014).
  13. McElroy, S. L., Reijo Pera, R. A. Preparation of mouse embryonic fibroblast feeder cells for human embryonic stem cell culture. CSH Protoc. 2008, (2008).
  14. Lian, X., et al. Robust cardiomyocyte differentiation from human pluripotent stem cells via temporal modulation of canonical Wnt signaling. Proc. Natl. Acad. Sci. U.S.A. 109, E1848-E1857 (2012).
  15. Rezania, A., et al. Reversal of diabetes with insulin-producing cells derived in vitro from human pluripotent stem cells. Nat. Biotech. 32, 1121-1133 (2014).
  16. Shi, Y., Inoue, H., Wu, J. C., Yamanaka, S. Induced pluripotent stem cell technology: a decade of progress. Nat. Rev. Drug Discov. 16, 115-130 (2017).
  17. Wang, B., et al. Highly efficient CRISPR/HDR-mediated knock-in for mouse embryonic stem cells and zygotes. BioTechniques. 59, (2015).
  18. Liang, X., Potter, J., Kumar, S., Ravinder, N., Chesnut, J. D. Enhanced CRISPR/Cas9-mediated precise genome editing by improved design and delivery of gRNA, Cas9 nuclease, and donor DNA. J Biotech. 241, 136-146 (2017).
check_url/kr/56260?article_type=t

Play Video

Cite This Article
Nandal, A., Mallon, B., Telugu, B. P. Efficient Generation and Editing of Feeder-free IPSCs from Human Pancreatic Cells Using the CRISPR-Cas9 System. J. Vis. Exp. (129), e56260, doi:10.3791/56260 (2017).

View Video