Summary

右前小切口主动脉瓣置换术的技术及患者选择标准

Published: March 26, 2018
doi:

Summary

本协议的目的是详细描述的技术, 微创主动脉瓣置换通过右前小切口和中央主动脉插管。这种技术有可能提高患者的舒适度, 通过减少手术后的发病率, 促进降低住院时间和全球成本。

Abstract

主动脉瓣狭窄已成为发达国家最普遍的心脏瓣膜病, 是由于这些人群的衰老引起的。病理发生率随着年龄的增长而增加65年。常规手术主动脉瓣置换通过中位胸骨已成为患者护理的黄金标准症状性主动脉瓣狭窄。然而, 随着患者风险状况的恶化, 采取了其他的治疗策略, 试图维持已建立的外科治疗取得的优良效果。其中一种方法是由经导管主动脉瓣植入术表示。尽管经导管主动脉瓣置换术治疗症状性主动脉瓣狭窄的高危患者的预后有所改善, 但许多患者仍保留手术主动脉瓣置换术的候选条件。为减少外科手术后主动脉瓣瓣膜置换患者的手术创伤, 在过去的十年中, 微创治疗方法引起了人们的兴趣。自1993年引入右前方开胸术进行主动脉瓣置换手术以来, 右前小切口和上半胸骨已成为心脏外科医生执行最小进入主动脉的主要切口方法。阀门更换。在切口位置旁边, 动脉插管部位代表主动脉瓣膜置换术中的第二个主要标志。两个最常用的动脉插管部位包括中央主动脉和股骨周围的方法。为了减少这些病人的手术创伤, 我们选择了一个右前方小切口的中心主动脉插管的方法。本协议详细描述了一种微创主动脉瓣置换技术, 并为患者选择标准提供建议, 包括心脏计算机层析成像测量。讨论了这种技术的适应症和局限性, 以及它的替代方案。

Introduction

在心脏瓣膜病变诊断为血流动力学相关和临床上特别注意, 主动脉瓣狭窄是最常见的瓣膜病理学在美国和发达国家1, 2.在心血管健康研究中, 2% 的患者有坦率的主动脉狭窄, 随着年龄的增长明显增加: 1.3% 岁65-75 岁的患者, 2.4% 岁以上75-85 岁的患者, 4% 岁以上的病人中, 只有85年以上1。对于出现严重主动脉瓣狭窄的症状患者, 主动脉瓣置换术是美国心脏瓣膜病患者管理协会指导方针中的一项建议3

常规手术主动脉瓣置换通过中位全胸骨 (FS) 已确立为治疗主动脉瓣狭窄的金标准, 并在发病率和死亡率方面取得了优异的结果4。这些结果鼓励将治疗适应症扩大到老年患者和高危患者。在这些患者亚群中已经实施了许多治疗策略, 以维持常规外科主动脉瓣膜置换术在普通人群中取得的良好效果。在这些替代治疗方式中, 经导管主动脉瓣植入 (TAVI) 于2002年由 Cribier 和同事5介绍。最初在垂死的病人, TAVI 迅速出现作为治疗的选择严重的主动脉狭窄谁不适合常规手术主动脉瓣替换6,7, 或作为一个较小的侵入性高危患者手术方法89

尽管在选定的患者亚群中 TAVI 的结果有所改善, 许多症状性主动脉瓣狭窄患者仍然是手术主动脉瓣置换的候选者。在这些患者中, FS 主动脉瓣置换术是心脏外科医生最常用的方法。然而, 已开发出各种 “微创” 技术, 其基本原理是减少手术创伤10。所有这些最低限度的接入技术都旨在通过缩短住院率和潜在的节省全球成本来改善患者的舒适度, 减少手术后的疼痛, 加速患者的康复.10。在微创切口方法中, 上半胸骨 (UHS) 和右前小切口 (RAMT) 已成为文献11中报道的主要技术。右前小切口主动脉瓣置换术最初报告贝奈特家庭et 等。12和上部半胸骨首先由几个作者11描述。除切口选择外, 目前采用两种动脉灌注策略: i) 外周股动脉插管, 比 ii.) 中央主动脉插管更为频繁。

尽管有报告说, 在微创主动脉瓣置换术后患者结局有了改善, 但对限制性手术和外周动脉灌注策略的缺点的担忧13导致许多心脏外科医生不让他们的病人受益于潜在的优势, 最小的访问方法的主动脉瓣置换。本协议的目的是详细描述这一技术的微创主动脉瓣置换通过右前小切口无肋骨切除/骨折, 并与中央主动脉插管动脉灌注。通过这项协议, 更多的心脏外科医生可以执行右前小切口主动脉瓣置换在某些病人组。讨论了患者的选择和技术的局限性。早期的结果与一组接受独立的主动脉瓣置换的患者进行比较, 完全胸骨。

Protocol

该议定书遵循了人类研究伦理学委员会的机构准则。 1. 患者选择 (表 1) 确定有必要隔离主动脉瓣置换的患者14。 在这些患者中选择一个没有主要的胸畸形 (Kypho 脊柱侧凸) 的亚组, 以前的放疗史或右半胸腔手术, 需要紧急手术, 并手术治疗活动性心内膜炎。 进行胸部计算机断层扫描 (CT) 检查, 以排除患者的升主动脉动脉瘤≥4.5 厘米。 …

Representative Results

在表 2、表3、和表 4中使用非参数的曼恩惠特尼测试, 对连续变量 (显示为方法) 进行统计分析。分类变量以百分比形式显示在表 2、表3、和表 4中, 并通过卡方测试进行比较。统计分析是使用商用软件进行的, 其统计意义阈值设置在p< 0.05 中。 <str…

Discussion

在本协议中, 我们详细描述了右前小切口在孤立主动脉瓣置换术中的技术, 并着重介绍了该手术患者的选择标准。至于其他治疗干预, 正确的病人选择是成功完成手术的关键。本协议对患者的最佳 CT 测量方法进行了准确的描述, 并根据经验, 考虑了硝博士和同事在该领域的广泛工作10。这些最佳的 CT 测量增加了一些有价值的标准,, 从主动脉环中的冠状动脉开口的距离, 到硝…

Disclosures

The authors have nothing to disclose.

Acknowledgements

这项工作得到了瑞士心血管基金会的赠款 (N° 32119) 的支持。

Materials

Heart surgery infrastructure:
Heart Lung Machine Stockert SIII
EOPA 24Fr. arterial cannula Medtronic 77624
FemFlex arterial cannula Edwards FEMII20A
Quickdraw 25Fr. femoral venous cannula Edwards QD25
Biomedicus 25Fr. Nextgen venous cannula Medtronic 96670-125
LV vent catheter 17Fr. Edwards E061
Antegrade 9Fr. cardioplegia cannula Edwards AR012V
Coronary artery ostial cannula 90° Medtronic 30155
Coronary artery ostial cannula 45° Medtronic 30255
Soft tissue retractor
STAR soft tissue atraumatic retractor Estech EC400220
Soft tissue retractor Edwards TRM
Electrocautery Covidien Force FXTM
Sutures:
Polypropylene 4/0 Ethicon 8871H
Polypropylene 5/0 Ethicon 8870H
Braided polyesther 2/0 ligature with polybutylate coating  Ethicon X305H
Braided polyesther2/0 with pledgets V5 Ethicon MEH7715N
Braided polyglactin 2/0 suture Ethicon V114H
Braided polyglactin 0 suture Ethicon W9996
Drugs:
Midazolam Roche Pharma N05CD08
Rocuronium MSD Merck Sharp & Dohme  M03AC09
Propofol Fresenius Kabi N01AX10
Fentanil Actavis N01AH01
Heparin Braun B01AB01
Protamin MEDA Pharmaceutical V03AB14
Custodiol cardioplegia solution Dr. F. Köhler Chemie GmbH B05CX10
Instruments:
Window access retractor SI Estech 400-400
SI retractor blade 40W50L Estech 400-172
Ceramo atraumatic forceps 2.8×15/350 Fehling FE-MRA-3
Ceramo HCR valve forceps 3.0×15/350 Fehling FE-MRA-0
Ceramo HCR needle holder 2×10/340 Fehling FE-MRB-2
Ceramo TC HCR needle holder curved 3×10/340 Fehling FE-MRG-9
Ceramo HCR valve scissors 350 Fehling FE-MRA-7
Ceramo HCR curved scissors 350 Fehling FE-MRA-6
Cygnet flexible arched aortic clamp Vitalitec V10143
Intrack insert set double traction Vitalitec N10122
Dissection forceps Carpentier Delacroix-Chevalier DC13110-28 
Scissors Metzenbaum Delacroix-Chevalier B351751
Needle holder Ryder Delacroix-Chevalier DC51130-20 
Dissection forceps DeBakey Delacroix-Chevalier DC12000-21 
Lung retractor Delacroix-Chevalier B803990
Allis clamp Delacroix-Chevalier DC45907-25 
O’Shaugnessy Dissector Delacroix-Chevalier B60650
18 blade knife Delacroix-Chevalier B130180
11 blade knife Premiere 9311-2PK
Leriche haemostatic clamp Delacroix-Chevalier B86555
Data analysis
Mann-Whitney and Chi-square tests GraphPad Prism 7

References

  1. Supino, P. G., Borer, J. S., Preibisz, J., Bornstein, A. The epidemiology of valvular heart disease: a growing public health problem. Heart. Fail. Clin. 2 (4), 379-393 (2006).
  2. Carabello, B. A., Paulus, W. J. Aortic stenosis. The Lancet. 373 (9667), 956-966 (2009).
  3. Bonow, R. O., et al. Focused update incorporated into the ACC/AHA 2006 guidelines for the management of patients with valvular heart disease. Circulation. 118 (15), 523-661 (2008).
  4. Brown, J. M., O’Brien, S. M., Wu, C., Sikora, J. A. H., Griffith, B. P., Gammie, J. S. Isolated aortic valve replacement in North America comprising 108,687 patients in 10 years: changes in risks, valve types, and outcomes in the Society of Thoracic Surgeons National Database. J. Thorac. Cardiovasc. Surg. 137 (1), 82-90 (2009).
  5. Cribier, A., et al. Percutaneous transcatheter implantation of an aortic valve prosthesis for calcific aortic stenosis. First human case description. Circulation. 106 (24), 3006-3008 (2002).
  6. Leon, M. B., et al. Transcatheter aortic-valve implantation for aortic stenosis in patients who cannot undergo surgery. N. Engl. J. Med. 363 (17), 1597-1607 (2010).
  7. Popma, J. J., et al. Transcatheter aortic valve replacement using a self-expanding bioprosthesis in patients with severe aortic stenosis at extreme risk for surgery. J. Am. Coll. Cardiol. 63 (19), 1972-1981 (2014).
  8. Smith, C. R., et al. Transcatheter versus surgical aortic-valve replacement in high-risk patients. N. Engl. J. Med. 364 (23), 2187-2198 (2011).
  9. Adams, D. H., et al. Transcatheter aortic-valve replacement with a self-expanding prosthesis. N. Engl. J. Med. 370 (19), 1790-1798 (2014).
  10. Glauber, M., Ferrarini, M., Miceli, A. Minimally invasive aortic valve surgery: state of the art and future directions. Ann. Cardiothorac. Surg. 4 (1), 26-32 (2015).
  11. Malaisrie, S. C., et al. Current era minimally invasive aortic valve replacement: techniques and practice. J. Thorac. Cardiovasc. Surg. 147 (1), 6-14 (2014).
  12. Benetti, F. J., Mariani, M. A., Rizzardi, J. L., Benetti, I. Minimally invasive aortic valve replacement. J. Thorac. Cardiovasc. Surg. 113 (4), 806-807 (1997).
  13. Murtuza, B., et al. Minimal access aortic valve replacement: is it worth it. Ann. Thorac. Surg. 85 (3), 1121-1131 (2008).
  14. Tavakoli, R., Jamshidi, P., Gassmann, M. Full-root aortic valve replacement by stentless aortic xenografts in patients with small aortic. J. Vis. Exp. (123), (2017).
  15. Roques, F., et al. LRisk factors and outcome in european cardiac surgery: analysis of the EuroSCORE multinational database of 19030 patients. Eur. J. Cardiothorac. Surg. 15 (6), 816-823 (1999).
  16. Bowdish, M. E., et al. A comparison of aortic valve replacement via an anterior right minithoracotomy with standard sternotomy: a propensity score analysis of 492 patients. Eur. J. Cardiothorac. Surg. 49 (2), 456-463 (2016).
  17. Bethencourt, D. M., Le, J., Rodriguez, G., Kalayjian, R. W., Thomas, G. S. Minimally invasive aortic valve replacement via right anterior minithoracotomy and central aortic cannulation: A 13-Year experience. Innovations (Phila). 12 (2), 87-94 (2017).
  18. Lamelas, J. Minimally invasive aortic valve replacement: the “Miami Method”. Ann Cardiothorac. Surg. 4 (1), 71-77 (2015).
  19. Murzi, M., Glauber, M. Central versus femoral cannulation during minimally invasive aortic valve replacement. Ann. Cardiothorac. Surg. 4 (1), 59-61 (2015).
  20. Grossi, E. A., et al. Evolution of operative techniques and perfusion strategies for minimally invasive mitral valve repair. J. Thorac. Cardiovasc. Surg. 143 (4), 68-70 (2012).
  21. LaPietra, A., et al. Incidence of cerebrovascular accidents in patients undergoing minimally invasive valve surgery. J. Thorac. Cardiovasc. Surg. 148 (1), 156-160 (2014).
  22. Gammie, J. S., Zhao, Y., Peterson, E. D., O’Brien, S. M., Rankin, J. S., Griffith, B. P. Less-invasive mitral valve operations: trends and outcomes from the Society of Thoracic Surgeons Adult Cardiac Surgery database. Ann Thorac Surg. 90 (5), 1408-1410 (2010).
  23. Grossi, E. A., et al. Minimally invasive valve surgery with antegrade perfusion strategy is not associated with increased neurological complications. Ann. Thorac. Surg. 92 (4), 1346-1350 (2011).
  24. Murzi, M., et al. Antegrade and retrograde arterial perfusion strategy in minimally invasive mitral-valve surgery: a propensity score analysis on 1280 patients. Eur. J. Cardiothorac. Surg. 43 (6), 167-172 (2013).
  25. Glauber, M., Farneti, A., Solinas, M., Karimov, J. Aortic valve replacement through a right minithoracotomy. Multimed. Man. Cardiothorac. Surg. 2006 (1110), (2006).
  26. D’Agostino, R. S. The Society of Thoracic Surgeons Adult Cardiac Surgery Database: 2016 Update on Outcomes and Quality. Ann. Thorac. Surg. 101 (1), 24-32 (2016).
  27. Glauber, M., et al. Right anterior minithoracotomy versus conventional aortic valve replacement: A propensity score matched study. J. Thorac. Cardiovasc. Surg. 145 (5), 1222-1226 (2013).
  28. Jones, D. A., Tchétché, D., Forrest, J., Hellig, F., Lansky, A., Moat, N. The SURTAVI study: TAVI for patients with intermediate risk. EuroIntervention. 13 (5), 617-620 (2017).
check_url/kr/57323?article_type=t

Play Video

Cite This Article
Tavakoli, R., Leprince, P., Gassmann, M., Jamshidi, P., Yamani, N., Amour, J., Lebreton, G. Technique and Patient Selection Criteria of Right Anterior Mini-Thoracotomy for Minimal Access Aortic Valve Replacement. J. Vis. Exp. (133), e57323, doi:10.3791/57323 (2018).

View Video