Summary

模型外科训练: 用逼真模拟器 Fetoscopic 激光光凝单绒毛膜 Diamniotic 双胎胎盘的技能习得

Published: March 21, 2018
doi:

Summary

练习 fetoscopic 激光凝固单绒毛膜胎盘吻合术所需的特定技能, 可以帮助经验较少的外科医生克服与这个过程相关的陡峭的学习曲线, 现在被认为是双胎输血综合征的护理标准。

Abstract

Fetoscopic 激光凝固动静脉吻合 (艾娃) 在一个单绒毛膜胎盘是标准的双重输血综合征 (TTTS), 但在技术上具有挑战性, 并可能导致重大并发症。获得和保持必要的外科技能需要一致的做法, 关键的工作量和时间。对逼真的外科模拟器的训练可能会缩短这一陡峭的学习曲线, 并使几个 proceduralists 同时获得程序特定的技能。在这里, 我们描述的真实模拟器设计, 使用户熟悉的设备和具体步骤所需的手术治疗 TTTS, 包括 fetoscopic 处理, 方法的前和后胎盘, 承认吻合, 有效的血管凝固。我们描述了在进行胎盘激光凝固时特别重要的技能, 外科医生可以在该模型上进行练习并应用于临床病例。这些模型可以根据材料的可用性和要求标准的 fetoscopy 设备方便地进行调整。这种训练系统是对传统的外科学徒的补充, 可以帮助提供这种临床服务的胎儿医学单位。

Introduction

一种新的微创外科技术的获得通常采用传统的外科学徒模式, 在该模型中, 个人从观察一个专家外科医生的工作到一个活的病人, 并最终执行技术下关闭监视1。这一由来已久的模式常常限制从导师到个人受训者的知识的传授, 并严重依赖于资源的可用性, 如培训资金和病人案例加载2。Fetoscopic 手术是一种高风险的微创手术的例子, 在怀孕期间对早产个体进行, 对母亲和胎儿都有风险。与任何外科手术一样, 在学习曲线的初始陡峭斜坡上, 并发症发生率较高。因此, 手术通常由最资深或熟练的外科医生执行, 以满足关键的病例数量来优化患者结局3

良好的 fetoscopy 技能对于未来的胎儿治疗是很重要的, 它努力进行微创, 即使是对结构缺陷的矫正4,5,6。Fetoscopic 手术在技术上是有挑战性的, 在真实的剧场环境中练习和开发新技能与患者的安全有内在的风险。即使是已建立的外科医生需要时间和一贯的做法, 多名病人获得专业知识, 故障排除的技能, 当出现困难, 以及本能预测和避免陷阱, 在一个新的和复杂的程序。通常与新手 proceduralists7相关的次优结果的耐受性较差。虽然在最初实施 fetoscopic 手术时不损害患者的安全很重要, 但也需要提高所有 proceduralists 的技能和专长, 特别是在较小的临床单位刚开始练习 fetoscopy。需要一个补充传统学徒制的替代制度, 以应付有限的培训资金和一个小的病人基础上的挑战, 以便掌握这些高度专门化的程序。程序学习曲线可以缩短, 并通过对高保真机器或尸体动物模型的训练减少并发症, 与专用的传统指导或远程 proctorship 和过程重点逐步学习8, 9,10,11。熟悉 fetoscope 操作, 血管赤道的宫内取向和激光凝固术前进行实际手术有可能减少手术并发症12,13。这种训练可以缩短新操作员的学习曲线, 因为他们掌握了现实组织模型的基本技能。

单卵双生子孪生发生在全世界范围内的均匀频率影响3-5 每1000怀孕, 和75% 的单卵双生子双胞胎与单绒毛膜 diamniotic (MCDA) 胎有很大的风险 TTTS, 目前复杂约10-15% 的MCDA 怀孕, 或1-3 每1万出生14。在 monozygosity1516171819中, 该发病率预计会随体外受精 (IVF) 频率增加2到12倍。TTTS 是通过深 intraplacental 艾娃的单向胎儿间血流产生的。未经治疗, 这对幸存的胎儿有60-100% 的死亡率和严重的发病率20,21,22

选择性 fetoscopic 激光凝固 (SFLP) 是唯一的治疗干预, 旨在抢救两个双胞胎通过 fetoscopic 鉴定和消融的违规艾娃, 并被认为是护理标准在 TTTS 阶段 (93% 的所有病例) 在妊娠 < 26 周的妊娠, 与临床研究进展, 以确定是否也应适用于选定的第一阶段疾病23,24,25。SFLP 的总体围产期生存率为 ~ 70%, 更高的可能性更高级妊娠和更高的出生体重在交付26,27 , 并认为优于其他干预, 因为它直接矫正TTTS 的基础病理学28,29,30。干预本身不是没有并发症, 激光治疗 TTTS 与复发 (0-16%), 围产期死亡率 (~ 35%), 和5-20% 的可能性长期神经障碍23。获得正确的技能, 在陡峭的学习曲线上建立专门知识, 遵守 fetoscopic 实践的国际标准, 保持外科灵巧, 对于提供这一复杂疾病的最佳结局至关重要13 ,31,32,33。这通常依赖于财务和人力资源以及可能需要很长时间才能获取34的关键案例数量。建立的胎儿治疗中心目前集中在西欧和北美洲, 但预测的人口激增 (因而新的怀孕) 将主要影响亚洲和非洲35,36。因此, 在这些资源较低的人群中, 可预期胎儿畸形的发病率会增加, 而这种情况可能会出现在宫内治疗中。传播诸如 fetoscopic 外科等专门服务是一项挑战, 需要作为区域优先事项37加以解决。在这些地区, 新的胎儿治疗中心必须可靠地提供 SFLP 服务, 以满足社区的需要, 但是新的中心需要大量的投资和时间来实现类似的结果, 如建立的38,39,40,41

从资源繁重的学徒模式出发, 将有助于向有巨大需求的社区传播技能和专门知识。传统的外科学徒仍然是相关的, 但对于许多较小的临床单位来说是不太实际的, 因为它是时间和资源消耗, 并限制了知识和技能的传授给一个实习生一次。proctorship 下的模拟器培训更适用于更广泛的范围, 通过讲习班和对可靠组织模型的定期技能培训, 促进通过专家向多人传授知识和技能13,42,43. 有人建议, 由于其稀有性, TTTS 治疗应积累在大容量的胎儿中心, 以改善其结果。然而, 还需要建立新的胎儿护理中心, 以改善患者获得治疗的机会。新兴的胎儿护理中心, 如新加坡国立大学医院 (努哈), 将需要遵守某些指导方针, 以维持其手术结局,, Siriraj 努哈 proctorship 系统, 如图 137 中所示.

在这篇文章中, 我们将描述一个基于模型的系统, 新的 proceduralists 可以在专家的指导下进行串联的技能训练, 并且通过这些技能可以在长时间间隔内练习保持手术的灵巧度。患者.我们将从我们在曼谷的 Siriraj 医院和新加坡的努哈的经验分享实际的要点, 启动胎儿治疗6,44,45

Protocol

从足月分娩中收集的人胎盘是由新加坡努哈 (DSRB C/00/524) 领域专门审查委员会和曼谷 SIRB 医院 Siriraj 机构审查委员会 (Siriraj 704/2559) 批准的。在所有情况下, 病人都给予不同的书面同意, 以使用收集标本。猪膀胱是从新加坡当地的屠夫那里收集来的, 是努哈博士的一种捐赠。非人类灵长类动物 (NHP) 胎盘是在卫生部 (新加坡) 国家医学研究理事会赠款 NMRC/CSA/043/2012 下繁殖的猕猴猴收集的废料, 严?…

Representative Results

fetoscopy 模拟器的基本要求是透明的 “皮肤”, 使模型中胎盘的超声可视化和 MCDA 胎盘的典型模型。这里说明的模拟器是在 Siriraj 医院 (曼谷) 开发的, 是一个封闭的系统, 其中包含了妊娠中期单绒毛膜胎盘的硅复制品 (图1)。这种模式的一致使用, 应该增加新手外科医生对胎盘定向和 fetoscope 安置的信心, 并增加对处理直和弯曲 fetoscopes 的熟悉程度。对组织?…

Discussion

在 fetoscopy 模拟器和组织模型上练习的技能包含了 SFLP 所需的大部分技术能力。这些模型的训练的优点包括学习同时处理超声探头和 fetoscope, 熟悉处理直曲线 fetoscopes, 对整个血管赤道进行系统检查。双胞间膜长度, 以识别高保真 MCDA 胎盘的网状血管, 并学习正确的技术, 使用在大型和高流量的船只, 以避免破裂, 这可能会导致严重的后果, 包括突然丧失视力或者是双胞胎的放血。此外, 还可以对所罗?…

Disclosures

The authors have nothing to disclose.

Acknowledgements

作者感谢在新加坡和曼谷帮助建造模型、提供材料和便利培训讲习班的人们: 颂博士、轭辉坊教授、Viboonchart、金妮、塞西尔、Laureano、培黄宽, 美兰谢, 杰瑞. 肯塔基教授. 材料得到医学 Siriraj 医院、曼谷和国立大学医院、新加坡国家医学研究理事会 (新加坡) 妇产科部门的支持。格兰特 NMRC/CSA/043/2012

Materials

Fetoscopic Simulator Maternal-Fetal Medicine unit, Department of Obstetrics and Gynaecology, Siriraj Hospital, Bangkok, Thailand NA. Siriraj Fetoscopic Simulator. Customised model of monochorionic anterior/posterior placenta and anastomses produced at the Siriraj Hospital in Bangkok.
Laparoscopy tower with light source, camera and video recorder Olympus Singapore Olympus Visera Elite system (Olympus Singapore) with camera OTV-S190 and light source CLV-S190 set at medium intensity (level 0) and video recorder  Laparoscopy tower for fetoscopy and recording of practice
Voluson E8 ultrasound machine with 4CD probe GE Healthcare Singapore GE Voluson E8; transabdominal 4CD curved transducer (2-5MHz)  Ultrasound system for guidance of fetoscope introduction and manipulation
Minature straight forward telescope 0o (2mm) for posterior placenta KARL STORZ GmbH & Co KG, Tuttlingen, Germany 11630AA Fetoscope. 0° lens, diameter 2mm, length 26cm, autoclavable, fibre optic light transmission incorporated. To use with operating sheath 11630KF.
Operating sheath, straight with pyramidal obturator.  KARL STORZ GmbH & Co KG, Tuttlingen, Germany 11630 KF Size 9 Fr with working channel 1 mm, for use with 11630AA; working channel for laser fibres up to 400µm core.
Multichannel miniature straight forward telescope 0° set straight for posterior placenta KARL STORZ GmbH & Co KG, Tuttlingen, Germany 11506AAK Fetoscope. 0° lens, diameter 3.3 mm, length 30cm , 30,000 pixels, integrated channels, autoclavable, fibre optic light transmission incorporated. 
Multichannel miniature straight forward telescope 0° set curved  for anterior placenta KARL STORZ GmbH & Co KG, Tuttlingen, Germany 11508AAK Fetoscope. 0° lens, diameter 3.3 mm, length 30cm , 30,000 pixels, integrated channels, autoclavable, fibre optic light transmission incorporated. 
Dornier diode laser with 400um or 600um laser fibre Medilas D Multibeam, Dornier MedTech Asia, Singapore S/N D60-353 Laser photocoagulation system. Diode (30-60 W) 
Laser fibre  400-600µm laser fiber Disposable LG type D01-6080-BF-0;LOT 1024/0613 Use the provided ceramic cutter to refashion the tip of the fibre once coagulated after burning to maintain the sharp focus of the laser. 
Large plastic container with ultrasound transparent skin; NA NA. Container is a simple houshold item with a watertight lid that cn be locked in place. The silicon rubber "skin" produced inhouse allows US visualisation of the placenta within the container. Can be used as a simulator for vascular laser coagulation. 
Pig bladder and small mid-gestation placenta  NA NA. Obtained from the local butcher. Elastic tissue that can be stretched when filled with large volume of fluid; can incorporate a small human/NHP placenta and used as a simulator for laser coagulation 

References

  1. Kieu, V., et al. The operating theatre as classroom: a qualitative study of learning and teaching surgical competencies. Educ Health (Abingdon). 28, 22-28 (2015).
  2. Lubowitz, J. H., Provencher, M. T., Brand, J. C., Rossi, M. J. The Apprenticeship Model for Surgical Training Is Inferior. Arthroscopy. 31, 1847-1848 (2015).
  3. Morris, R. K., Selman, T. J., Harbidge, A., Martin, W. I., Kilby, M. D. Fetoscopic laser coagulation for severe twin-to-twin transfusion syndrome: factors influencing perinatal outcome, learning curve of the procedure and lessons for new centres. BJOG : an international journal of obstetrics and gynaecology. 117, 1350-1357 (2010).
  4. Joyeux, L., et al. Fetoscopic versus Open Repair for Spina Bifida Aperta: A Systematic Review of Outcomes. Fetal diagnosis and therapy. 39, 161-171 (2016).
  5. Sala, P., et al. Fetal surgery: an overview. Obstet Gynecol Surv. 69, 218-228 (2014).
  6. Nawapun, K., et al. Current Strategy of Fetal Therapy II: Invasive Fetal Interventions. J Fetal Med. 4, 139-148 (2017).
  7. Hasan, A., Pozzi, M., Hamilton, J. R. New surgical procedures: can we minimise the learning curve. BMJ. 320, 171-173 (2000).
  8. Kwasnicki, R. M., Lewis, T. M., Reissis, D., Sarvesvaran, M., Paraskeva, P. A. A high fidelity model for single-incision laparoscopic cholecystectomy. Int J Surg. 10, 285-289 (2012).
  9. Srivastava, A., et al. Single-centre experience of retroperitoneoscopic approach in urology with tips to overcome the steep learning curve. J Minim Access Surg. 12, 102-108 (2016).
  10. Allyn, J., et al. A Comparison of a Machine Learning Model with EuroSCORE II in Predicting Mortality after Elective Cardiac Surgery: A Decision Curve Analysis. PLoS One. 12, 0169772 (2017).
  11. Howie, D. W., Beck, M., Costi, K., Pannach, S. M., Ganz, R. Mentoring in complex surgery: minimising the learning curve complications from peri-acetabular osteotomy. Int Orthop. 36, 921-925 (2012).
  12. Peeters, S. H., et al. Operative competence in fetoscopic laser surgery for TTTS: a procedure-specific evaluation. Ultrasound Obstet Gynecol. , (2015).
  13. Peeters, S. H., et al. Simulator training in fetoscopic laser surgery for twin-twin transfusion syndrome: a pilot randomized controlled trial. Ultrasound Obstet Gynecol. 46, 319-326 (2015).
  14. Blickstein, I. Monochorionicity in perspective. Ultrasound Obstet Gynecol. 27, 235-238 (2006).
  15. Lewi, L., et al. The outcome of monochorionic diamniotic twin gestations in the era of invasive fetal therapy: a prospective cohort study. Am J Obstet Gynecol. 199, 511-518 (2008).
  16. Blickstein, I. Does assisted reproduction technology, per se, increase the risk of preterm birth. BJOG : an international journal of obstetrics and gynaecology. 113, 68-71 (2006).
  17. Hack, K. E., et al. /=+32+weeks+of+gestation:+a+multicentre+retrospective+cohort+study.”>Perinatal mortality and mode of delivery in monochorionic diamniotic twin pregnancies >/= 32 weeks of gestation: a multicentre retrospective cohort study. BJOG : an international journal of obstetrics and gynaecology. 118, 1090-1097 (2011).
  18. Parazzini, F., et al. Risk of Monozygotic Twins After Assisted Reproduction: A Population-Based Approach. Twin Res Hum Genet. , 1-5 (2016).
  19. Simoes, T., et al. Outcome of monochorionic twins conceived by assisted reproduction. Fertil Steril. 104, 629-632 (2015).
  20. van Heteren, C. F., Nijhuis, J. G., Semmekrot, B. A., Mulders, L. G., van den Berg, P. P. Risk for surviving twin after fetal death of co-twin in twin-twin transfusion syndrome. Obstet Gynecol. 92, 215-219 (1998).
  21. Diehl, W., Diemert, A., Hecher, K. Twin-twin transfusion syndrome: treatment and outcome. Best practice & research. Clinical obstetrics & gynaecology. 28, 227-238 (2014).
  22. De Paepe, M. E., Luks, F. I. What-and why-the pathologist should know about twin-to-twin transfusion syndrome. Pediatr Dev Pathol. 16, 237-251 (2013).
  23. Simpson, L. L. Twin-twin transfusion syndrome. Am J Obstet Gynecol. 208, 3-18 (2013).
  24. De Lia, J. E., Kuhlmann, R. S. Twin-to-twin transfusion syndrome–30 years at the front. American journal of perinatology. 31, 7-12 (2014).
  25. Slaghekke, F., et al. Fetoscopic laser coagulation of the vascular equator versus selective coagulation for twin-to-twin transfusion syndrome: an open-label randomised controlled trial. Lancet. 383, 2144-2151 (2014).
  26. Benoit, R. M., Baschat, A. A. Twin-to-twin transfusion syndrome: prenatal diagnosis and treatment. American journal of perinatology. 31, 583-594 (2014).
  27. Habli, M., Lim, F. Y., Crombleholme, T. Twin-to-twin transfusion syndrome: a comprehensive update. Clin Perinatol. 36, 391-416 (2009).
  28. Rossi, A. C., D’Addario, V. Laser therapy and serial amnioreduction as treatment for twin-twin transfusion syndrome: a metaanalysis and review of literature. Am J Obstet Gynecol. 198, 147-152 (2008).
  29. van Klink, J. M., et al. Cerebral injury and neurodevelopmental impairment after amnioreduction versus laser surgery in twin-twin transfusion syndrome: a systematic review and meta-analysis. Fetal diagnosis and therapy. 33, 81-89 (2013).
  30. Roberts, D., Neilson, J. P., Kilby, M. D., Gates, S. Interventions for the treatment of twin-twin transfusion syndrome. Cochrane Database Syst Rev. 1, 002073 (2014).
  31. Peeters, S. H., et al. Identification of essential steps in laser procedure for twin-twin transfusion syndrome using the Delphi methodology: SILICONE study. Ultrasound Obstet Gynecol. 45, 439-446 (2015).
  32. Chalouhi, G. E., et al. Laser therapy for twin-to-twin transfusion syndrome (TTTS). Prenat Diagn. 31, 637-646 (2011).
  33. Mirheydar, H., Jones, M., Koeneman, K. S., Sweet, R. M. Robotic Surgical Education: a Collaborative Approach to Training Postgraduate Urologists and Endourology Fellows. JSLS : Journal of the Society of Laparoendoscopic Surgeons. 13, 287-292 (2009).
  34. Morris, R. K., Selman, T. J., Kilby, M. D., et al. Influences of experience, case load and stage distribution on outcome of endoscopic laser surgery for TTTS–a review. Prenat Diagn. 30, 808-809 (2010).
  35. . World Population Prospects: The 2015 Revision, Methodology of the United Nations Population Estimates and Projections. United Nations, D. o. E. a. S. A. , (2015).
  36. Haub, C. Fact Sheet: World Population Trends 2012. Population Reference Bureau. , (2012).
  37. Wataganara, T., et al. Establishing Prenatal Surgery for Myelomeningocele in Asia: The Singapore Consensus. Fetal diagnosis and therapy. 41, 161-178 (2017).
  38. Nakata, M., et al. A prospective pilot study of fetoscopic laser surgery for twin-to-twin transfusion syndrome between 26 and 27 weeks of gestation. Taiwan J Obstet Gynecol. 55, 512-514 (2016).
  39. Chang, Y. L., et al. Outcome of twin-twin transfusion syndrome treated by laser therapy in Taiwan’s single center: Role of Quintero staging system. Taiwan J Obstet Gynecol. 55, 700-704 (2016).
  40. Yang, X., et al. Fetoscopic laser photocoagulation in the management of twin-twin transfusion syndrome: local experience from Hong Kong. Hong Kong Med J. 16, 275-281 (2010).
  41. Yaffe, H., et al. Establishment of a fetoscopy and fetal blood sampling program in Israel. Isr J Med Sci. 17, 352-354 (1981).
  42. Tapia-Araya, A. E., et al. Assessment of Laparoscopic Skills in Veterinarians Using a Canine Laparoscopic Simulator. Journal of veterinary medical education. , 1-9 (2015).
  43. Angelo, R. L., et al. A Proficiency-Based Progression Training Curriculum Coupled With a Model Simulator Results in the Acquisition of a Superior Arthroscopic Bankart Skill Set. Arthroscopy. 31, 1854-1871 (2015).
  44. Gosavi, A., et al. Rapid initiation of fetal therapy services with a system of learner-centred training under proctorship: the National University Hospital (Singapore) experience. Singapore medical journal. 58, 311-320 (2017).
  45. Wataganara, T. Development of Fetoscopic and Minimally Invasive Ultrasound-guided Surgical Simulator: Part of Global Education. Donald School J Ultrasound Obstet Gynecol. 7, 352-355 (2013).
  46. Klaritsch, P., et al. Instrumental requirements for minimal invasive fetal surgery. BJOG : an international journal of obstetrics and gynaecology. 116, 188-197 (2009).
  47. Nizard, J., Barbet, J. P., Ville, Y. Does the source of laser energy influence the coagulation of chorionic plate vessels? Comparison of Nd:YAG and diode laser on an ex vivo placental model. Fetal diagnosis and therapy. 22, 33-37 (2007).
  48. Slaghekke, F., et al. Residual anastomoses in twin-twin transfusion syndrome after laser: the Solomon randomized trial. Am J Obstet Gynecol. 211, 281-287 (2014).
  49. Dhillon, R. K., Hillman, S. C., Pounds, R., Morris, R. K., Kilby, M. D. Comparison of Solomon technique with selective laser ablation for twin-twin transfusion syndrome: a systematic review. Ultrasound Obstet Gynecol. 46, 526-533 (2015).
  50. Lopriore, E., et al. Accurate and simple evaluation of vascular anastomoses in monochorionic placenta using colored dye. J Vis Exp. , e3208 (2011).
  51. Baschat, A. A., Oepkes, D. Twin anemia-polycythemia sequence in monochorionic twins: implications for diagnosis and treatment. American journal of perinatology. 31, 25-30 (2014).
  52. Mattar, C. N., Biswas, A., Choolani, M., Chan, J. K. Animal models for prenatal gene therapy: the nonhuman primate model. Methods Mol Biol. 891, 249-271 (2012).
  53. Pedreira, D. A., et al. Gasless fetoscopy: a new approach to endoscopic closure of a lumbar skin defect in fetal sheep. Fetal diagnosis and therapy. 23, 293-298 (2008).
  54. Feitz, W. F., et al. Endoscopic intrauterine fetal therapy: a monkey model. Urology. 47, 118-119 (1996).
check_url/kr/57328?article_type=t

Play Video

Cite This Article
Wataganara, T., Gosavi, A., Nawapun, K., Vijayakumar, P. D., Phithakwatchara, N., Choolani, M., Su, L. L., Biswas, A., Mattar, C. N. Z. Model Surgical Training: Skills Acquisition in Fetoscopic Laser Photocoagulation of Monochorionic Diamniotic Twin Placenta Using Realistic Simulators. J. Vis. Exp. (133), e57328, doi:10.3791/57328 (2018).

View Video